\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{calibration} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{minimal_volume_submanifolds}{Minimal volume submanifolds}\dotfill \pageref*{minimal_volume_submanifolds} \linebreak \noindent\hyperlink{CalibrationsFromSpinors}{Calibrations from spinors}\dotfill \pageref*{CalibrationsFromSpinors} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{application_in_string_theory}{Application in string theory}\dotfill \pageref*{application_in_string_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A degree-$p$ \emph{calibration} of an oriented [[Riemannian manifold]] $(X,g)$ is a [[differential p-form]] $\omega \in \Omega^p(X)$ with the property that \begin{enumerate}% \item it is [[closed differential form|closed]] $d \omega = 0$; \item evaluated on any oriented $p$-dimensional subspace of any [[tangent space]] of $X$, it is less than or equal to the induced degree-$p$ [[volume form]], with [[equality]] for at least one choice of subspace. \end{enumerate} A Riemannian manifold equipped with such a calibration is also called a \emph{calibrated geometry} (\hyperlink{HarveyLawson82}{Harvey-Lawson 82}) or similar. A \emph{calibrated submanifold} of a manifold with calibration is an oriented [[submanifold]] such that restricted to each of its tangent spaces $\omega$ \emph{equals} the induced volume form of the submanifold there. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{minimal_volume_submanifolds}{}\subsubsection*{{Minimal volume submanifolds}}\label{minimal_volume_submanifolds} Any calibrated submanifold $\Sigma \hookrightarrow X$ minimizes [[volume]] in its [[homology]] class. For Let $\tilde \Sigma \hookrightarrow X$ be a homologous [[submanifold]]. Then [[Stokes theorem]] together with the condition that $d \phi = 0$ implies that the [[integration of differential forms]] of $\phi$ over $\Sigma$ equals that over $\tilde \Sigma$. The defining conditions on calibrations and on calibrated submanifolds then imply the [[inequality]] \begin{displaymath} vol(\Sigma) \stackrel{cal\,subm}{=} \int_\Sigma \phi \stackrel{Stokes}{=} \int_{\tilde \Sigma} \phi \stackrel{calib}{\leq} \int_{\tilde \Sigma} d vol = vol(\tilde \Sigma) \,. \end{displaymath} \hypertarget{CalibrationsFromSpinors}{}\subsubsection*{{Calibrations from spinors}}\label{CalibrationsFromSpinors} \begin{quote}% under construction \end{quote} For suitable $n$ and $p$, and given a real [[spin representation]] of $Spin(n)$, then the [[Cartesian space]] $\mathbb{R}^n$ with its canonical Riemannian structure becomes $p$-calibrated with the calibration form being \begin{displaymath} \omega_{\epsilon} \coloneqq (\overline{\epsilon} \Gamma_{a_1 a_2 \cdots a_p} \epsilon) \, e^{a_1} \wedge \cdots \wedge e^{a_p} \end{displaymath} where \begin{enumerate}% \item $\{e^a\}$ denotes the canonical [[linear basis]] of [[differential 1-forms]]; \item $\epsilon$ is a non-vanishing [[spinor]]; \item $\overline{\epsilon} \Gamma_{a_1 a_2 \cdots a_p} \epsilon$ is the \href{spin+representation#SpinorBilinearForms}{canonical bilinear pairing} which in components is given by evaluating $\epsilon$ in the [[quadratic form]] given by multiplying the skew-symmetrized product of $p$ of the representation matrices $\Gamma^a$ of the [[Clifford algebra]] with the [[charge conjugation matrix]] $C$. \end{enumerate} (e.g. \hyperlink{DadokHarvey93}{Dadok-Harvey 93}). For instance for $n = 7$ and $p = 3$ then this gives the [[associative 3-form]] calibration. More generally for $X$ an $n$-dimensional [[Riemannian manifold]] with a [[covariantly constant spinor]] $\epsilon$, then under suitable conditions applying this construction in each [[tangent space]] gives a calibration. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The globalization of the [[associative 3-form]] of a [[G2-manifold]] is a calibration. A calibrated submanifold in this case is also called an [[associative submanifold]]. \item The [[Cayley 4-form]] on [[Spin(7)-manifolds]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The original articles are \begin{itemize}% \item [[Reese Harvey]], [[H. Blaine Lawson]], \emph{Calibrated geometries}, Acta Mathematica July 1982, Volume 148, Issue 1, pp 47-157 \item [[Reese Harvey]], \emph{Calibrated geometries}, Proceeding of the ICM 1983 (\href{http://www.mathunion.org/ICM/ICM1983.1/Main/icm1983.1.0797.0808.ocr.pdf}{pdf}) \end{itemize} The relation to [[Killing spinors]] goes back to \begin{itemize}% \item [[Reese Harvey]], \emph{Spinors and Calibrations}, Academic Press, 1990 (\href{http://www.elsevier.com/books/spinors-and-calibrations/harvey/978-0-12-329650-4}{publisher}) \item [[Jiri Dadok]], [[Reese Harvey]], \emph{Calibrations and spinors}, Acta Mathematica 1993, Volume 170, Issue 1, pp 83-120 \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Calibrated_geometry}{Calibrated geometry}} \item Jason Dean Lotay, \emph{Calibrated submanifolds and the Exceptional geometries}, 2005 (\href{https://people.maths.ox.ac.uk/joyce/theses/LotayDPhil.pdf}{pdf}) \end{itemize} \hypertarget{application_in_string_theory}{}\subsubsection*{{Application in string theory}}\label{application_in_string_theory} Discussion in [[string theory]]/[[M-theory]] includes the following. \begin{itemize}% \item [[Gary Gibbons]], [[George Papadopoulos]], \emph{Calibrations and Intersecting Branes} (\href{http://arxiv.org/abs/hep-th/9803163}{arXiv:hep-th/9803163}) \item [[Jerome Gauntlett]], [[Neil Lambert]], [[Peter West]], \emph{Branes and Calibrated Geometries}, Commun.Math.Phys. 202 (1999) 571-592 (\href{http://arxiv.org/abs/hep-th/9803216}{arXiv:hep-th/9803216}) \item [[George Papadopoulos]], [[Jan Gutowski]], \emph{AdS Calibrations}, Phys.Lett.B462:81-88,1999 (\href{http://arxiv.org/abs/hep-th/9902034}{arXiv:hep-th/9902034}) \item [[Jan Gutowski]], [[George Papadopoulos]], [[Paul Townsend]], \emph{Supersymmetry and generalized calibrations}, Phys.Rev.D60:106006, 1999 (\href{http://arxiv.org/abs/hep-th/9905156}{arXiv:hep-th/9905156}) \item [[Jan Gutowski]], S. Ivanov, [[George Papadopoulos]], \emph{Deformations of generalized calibrations and compact non-Kahler manifolds with vanishing first Chern class}, Asian Journal of Mathematics 7 (2003), 39-80 (\href{http://arxiv.org/abs/math/0205012}{arXiv:0205012}) \end{itemize} [[!redirects calibrations]] [[!redirects calibrated geometry]] [[!redirects calibrated geometries]] [[!redirects calibrated manifold]] [[!redirects calibrated manifolds]] [[!redirects calibrated submanifold]] [[!redirects calibrated submanifolds]] [[!redirects manifold with calibration]] [[!redirects manifolds with calibration]] [[!redirects manifold with calibrations]] [[!redirects manifolds with calibrations]] \end{document}