\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{canonical formula of myth} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{philosophy}{}\paragraph*{{Philosophy}}\label{philosophy} [[!include philosophy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{the_original_formulation}{The original formulation}\dotfill \pageref*{the_original_formulation} \linebreak \noindent\hyperlink{an_example}{An example}\dotfill \pageref*{an_example} \linebreak \noindent\hyperlink{the_quaternionic_interpretation}{The quaternionic interpretation}\dotfill \pageref*{the_quaternionic_interpretation} \linebreak \noindent\hyperlink{some_history}{Some history}\dotfill \pageref*{some_history} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \begin{quote}% \emph{La premi\`e{}re expression de la r\'e{}alit\'e{} serait de dire que la langue (c'est \`a{} dire le sujet parlant) n'aper\c{c}oit ni l'id\'e{}e a, ni la forme A, mais seulement le rapport $\frac{a}{A}$; cette expression serait encore tout \`a{} fait grossi\`e{}re. Il n'aper\c{c}oit pas vraiment que le rapport entre les deux rapports $\frac{a}{AHZ}$ et $\frac{abc}{A}$ , ou $\frac{b}{ARS}$ et $\frac{blr}{B}$ , etc. C'est l\`a{} ce que nous appelons le QUATERNION FINAL. de Saussure (\hyperlink{Saussure02}{2002}, p.39)} \end{quote} \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{canonical formula of mythical transformation} is an expression proposed in 1955 by the anthropologist [[Claude Lévi-Strauss|Lévi-Strauss]] in order to account for the abstract relations occuring between characters and their attributes in a myth understood as the collection of its variants. The vagueness of the initial proposal has been lifted by several mathematical interpretations in the aftermath. \hypertarget{the_original_formulation}{}\subsection*{{The original formulation}}\label{the_original_formulation} In L\'e{}vi-Strauss (\hyperlink{LS55}{1955}, p.442) the canonical formula is introduced as the ``algebraic'' expression: $^f x(a)\quad : \quad^f y(b)\qquad\cong\qquad ^f x(b)\quad :\quad^f a-1(y)$ . \hypertarget{an_example}{}\subsection*{{An example}}\label{an_example} \hypertarget{the_quaternionic_interpretation}{}\subsection*{{The quaternionic interpretation}}\label{the_quaternionic_interpretation} [[Jack Morava]] (\hyperlink{Morava03}{2003}, \hyperlink{Morava04}{2004}) proposed to interpret the canonical formula as the existence of an anti-isomorphism of the [[quaternion group]]. \hypertarget{some_history}{}\subsection*{{Some history}}\label{some_history} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Claude Lévi-Strauss]] \item [[kinship]] \item [[structuralism]] \item [[quaternion group]] \item [[code loop]] \end{itemize} \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item French wikipedia entry: (\href{https://fr.wikipedia.org/wiki/Formule_canonique_du_mythe}{link}) \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Num\'e{}ro sp\'e{}cial \emph{La formule canonique des mythes} , L'Homme \textbf{35} no.135 (1995). (\href{http://www.persee.fr/issue/hom_0439-4216_1995_num_35_135}{link}) \item Maurice Godelier, \emph{L\'e{}vi-Strauss} , Seuil Paris 2013. \item Jacques Lacan, \emph{Le mythe individuel du n\'e{}vros\'e{}} , Seuil Paris 2007. \item H. G. Landau, \emph{On dominance relations and the structure of animal societies: Effect of inherent characteristics} , Bull. Math, Biophysics \textbf{13} (1951) pp.1-19,245-62. \item [[Claude Lévi-Strauss]], \emph{The Structural Study of Myth} , J. American Folklore \textbf{78} no. 278 (1955) pp.428-444. \item [[Claude Lévi-Strauss]], \emph{Antropologie Structurale} , Plon Paris 1958. \item [[Claude Lévi-Strauss]], \emph{D'un oiseau \`a{} l'autre} , L'Homme \textbf{25} no.93 (1985) pp.5-12. (\href{http://www.persee.fr/doc/hom_0439-4216_1985_num_25_93_368539}{link}) \item [[Claude Lévi-Strauss]], \emph{La Poti\`e{}re Jalouse} , Plon Paris 1985. \item Juan Pablo Lucchelli, \emph{Le mythe individuel revisit\'e{}} , L'information psychatrique \textbf{82} no.2 (2006) pp.155-158. (\href{http://www.cairn.info/revue-l-information-psychiatrique-2006-2-page-155.htm}{link}) \item Juan Pablo Lucchelli, \emph{Lacan et la formule canonique des mythes} , Les Temps Modernes no.660 (2010) pp.116-131. \item Pierre Maranda (ed.), \emph{The Double Twist} , University of Toronto Press 2001. \item [[Jack Morava]], \emph{On the Canonical Formula of C. L\'e{}vi-Strauss} , arXiv.0306174v2 (2003). (\href{http://arxiv.org/abs/math/0306174}{abstract}) \item [[Jack Morava]], \emph{Une interpr\'e{}tation math\'e{}matique de la formule canonique de Claude L\'e{}vi-Strauss} , Cahiers de L'Herne \textbf{88} (2004) pp.216-218. \item [[Jack Morava]], \emph{From L\'e{}vi-Strauss to Chaos and Complexity} , in Mosko, Damon (eds.), \emph{On the Order of Chaos} , Berghahn Oxford 2005. \item [[Jean Petitot]], \emph{Approche morphodynamique \`a{} la formule cannonique des mythes} , L'Homme \textbf{28} no.106-107 (1988) pp.24-50. (\href{http://www.persee.fr/doc/hom_0439-4216_1988_num_28_106_368968}{link}) \item A. Rapoport, \emph{Outline of a Probabilistic Approach to Animal Sociology} , Bull. Math. Biophys. \textbf{11} (1949) pp.183-196, pp.273-281. \item Elisabeth Roudinesco, \emph{Jacques Lacan} , Fayard Paris 1993. \item Ferdinand de Saussure, \emph{\'E{}crits de linguistique g\'e{}n\'e{}rale} , Gallimard Paris 2002. \item Lucien Scubla, \emph{Lire L\'e{}vi-Strauss} , Odile Jacob Paris 1998. \end{itemize} [[!redirects canonical formula]] [[!redirects Canonical formula]] [[!redirects canonical formula of mythical transformation]] [[!redirects canonical formula for myth]] \end{document}