\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cardinal arithmetic} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{arithmetic}{}\paragraph*{{Arithmetic}}\label{arithmetic} [[!include arithmetic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Cardinal arithmetic is an [[arithmetic]] with [[cardinals]], which generalizes the ordinary [[arithmetic]] of [[natural numbers]] to non-[[finite set|finite numbers]]. The idea is that on [[finite sets]], whose [[cardinalities]] are [[natural numbers]], the usual operations of [[arithmetic]] -- [[addition]], [[multiplication]] and [[exponentiation]] -- are represented on [[finite sets]] by basic operations of [[set theory]], namely forming [[disjoint union]] of sets, forming [[Cartesian product]] of sets and forming [[function sets]] of sets. \begin{tabular}{l|l} $\phantom{A}$[[natural numbers]]$\phantom{A}$&$\phantom{A}$[[finite sets]]$\phantom{A}$\\ \hline $\phantom{A}$[[addition]]$\phantom{A}$&$\phantom{A}$[[disjoint union]]$\phantom{A}$\\ $\phantom{A}$[[multiplication]]$\phantom{A}$&$\phantom{A}$[[Cartesian product]]$\phantom{A}$\\ $\phantom{A}$[[exponentiation]]$\phantom{A}$&$\phantom{A}$[[function sets]]$\phantom{A}$\\ \end{tabular} (Here passing from the left to the right column is an example of \emph{[[vertical categorification|categorification]]}, while passing from right to left is an example \emph{[[decategorification]]}.) But the operations on sets on the right directly generalize from [[finite sets]] to general sets, hence from sets whose [[cardinality]] is a [[natural number]] to [[infinite cardinals]]. Therefore cardinal arithmetic is also called a \emph{[[transfinite arithmetic]]}. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} For $S$ a [[set]], write ${|S|}$ for its [[cardinality]]. Then the standard operations in the [[category]] [[Set]] induce [[arithmetic]] operations on [[cardinal numbers]]: For $S_1$ and $S_2$ two sets, the \textbf{sum} of their cardinalities is the cardinality of their [[disjoint union]], the [[coproduct]] in $Set$: \begin{displaymath} {|S_1|} + {|S_2|} \coloneqq {|S_1 \amalg S_2|} \,. \end{displaymath} More generally, given any family $(S_i)_{i: I}$ of sets indexed by a set $I$, the \textbf{sum} of their cardinalities is the cardinality of their disjoint union: \begin{displaymath} \sum_{i: I} {|S_i|} \coloneqq {|\coprod_{i: I} S_i|} \,. \end{displaymath} Likewise, the \textbf{product} of their cardinalities is the cardinality of their [[cartesian product]], the [[product]] in $Set$: \begin{displaymath} {|S_1|} \, {|S_2|} \coloneqq {|S_1 \times S_2|} \,. \end{displaymath} More generally again, given any family $(S_i)_{i: I}$ of sets indexed by a set $I$, the \textbf{product} of their cardinalities is the cardinality of their cartesian product: \begin{displaymath} \prod_{i: I} {|S_i|} \coloneqq {|\prod_{i: I} S_i|} \,. \end{displaymath} Also, the \textbf{exponential} of one cardinality raised to the power of the other is the cardinality of their [[function set]], the [[exponential object]] in $Set$: \begin{displaymath} {|S_1|}^{|S_2|} \coloneqq {|Set(S_2,S_1)|} \,. \end{displaymath} In particular, we have $2^{|S|}$, which (assuming the law of [[excluded middle]]) is the cardinality of the [[power set]] $P(S)$. In [[constructive mathematics|constructive]] (but not [[predicative mathematics|predicative]]) mathematics, the cardinality of the power set is $\Omega^{|S|}$, where $\Omega$ is the cardinality of the set of [[truth values]]. The usual way to define an ordering on cardinal numbers is that ${|S_1|} \leq {|S_2|}$ if there exists an [[injection]] from $S_1$ to $S_2$: \begin{displaymath} ({|S_1|} \leq {|S_2|}) \;:\Leftrightarrow\; (\exists (S_1 \hookrightarrow S_2)) \,. \end{displaymath} Classically, this is almost equivalent to the existence of a [[surjection]] $S_2 \to S_1$, except when $S_1$ is [[empty set|empty]]. Even restricting to [[inhabited sets]], these are not equivalent conditions in [[constructive mathematics]], so one may instead define that ${|S_1|} \leq {|S_2|}$ if there exists a [[subset]] $X$ of $S_2$ and a surjection $X \to S_1$. Another alternative is to require that $S_1$ (or $X$) be a [[decidable subset]] of $S_2$. All of these definitions are equivalent using [[excluded middle]]. This order relation is [[antisymmetric relation|antisymmetric]] (and therefore a [[partial order]]) by the [[Cantor–Schroeder–Bernstein theorem]] (proved by Cantor using the [[well-ordering theorem]], then proved by Schroeder and Bernstein without it). That is, if $S_1 \hookrightarrow S_2$ and $S_2 \hookrightarrow S_1$ exist, then a bijection $S_1 \cong S_2$ exists. This theorem is not constructively valid, however. The well-ordered cardinals are [[well-order|well-ordered]] by the ordering $\lt$ on [[ordinal numbers]]. Assuming the [[axiom of choice]], this agrees with the previous order in the sense that $\kappa \leq \lambda$ iff $\kappa \lt \lambda$ or $\kappa = \lambda$. Another definition is to define that $\kappa \lt \lambda$ if $\kappa^+ \leq \lambda$, using the successor operation below. The \textbf{[[successor]]} of a well-ordered cardinal $\kappa$ is the smallest well-ordered cardinal larger than $\kappa$. Note that (except for finite cardinals), this is different from $\kappa$'s successor as an [[ordinal number]]. We can also take successors of arbitrary cardinals using the operation of [[Hartog's number]], although this won't quite have the properties that we want of a successor without the axiom of choice. \hypertarget{remarks}{}\subsubsection*{{Remarks}}\label{remarks} \begin{itemize}% \item It is traditional to write [[ℵ]]${}_0$ for the first [[infinite cardinal]] (the cardinality of the [[natural numbers]]), $\aleph_1$ for the next (the first uncountable cardinality), and so on. In this way every cardinal (assuming choice) is labeled $\aleph_\mu$ for a unique [[ordinal number]] $\mu$, with $(\aleph_\mu))^+ = \aleph_{\mu^+}$. \item For every cardinal $\pi$, we have $2^\pi \gt \pi$ (this is sometimes called [[Cantor's theorem]]). The question of whether $2^{\aleph_0} = \aleph_{1}$ (or more generally whether $2^{\aleph_\mu} = \aleph_{\mu^+}$) is called Cantor's continuum problem; the assertion that this is the case is called the (generalized) [[continuum hypothesis]]. It is known that the continuum hypothesis is undecidable in [[ZFC]]. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{theorem} \label{}\hypertarget{}{} For every [[infinite cardinal]] $\pi$ we have (using the axiom of choice) $\pi + \pi = \pi$ and $\pi \cdot \pi = \pi$, so addition and multiplication are [[idempotent]]. \end{theorem} \begin{proof} Since $\pi \leq \pi + \pi = 2 \cdot \pi \leq \pi \cdot \pi$, it suffices to prove $\pi \cdot \pi \leq \pi$. Establishing this is closely analogous to establishing one of the standard bijections $\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$ -- not the one that enumerates along successive diagonals $x + y = k$ which are spheres in an $L^1$ [[p-norm|metric]] (and which involves additive structure), but one which enumerates along successive spheres in an $L^\infty$ metric (which involves only order structure). With this hint in mind, regard $\pi$ as the least [[ordinal]] in its cardinality class (using the [[well-ordering theorem]]), and suppose $\pi$ is a minimal counterexample to the statement. Thus ${|\alpha|}^2 = {|\alpha|}$ for all ordinals $\alpha \lt \pi$. Consider $\pi^3 = \pi \times \pi \times \pi$ in [[lexicographic order]]. This is a well-ordered set, as is the subset \begin{displaymath} S = \{(x, y, z) \in \pi^3: x = \max(y, z)\} \end{displaymath} under the order inherited from $\pi^3$. Clearly $S \cong \pi^2$ as sets. Under the supposition ${|\pi|} \lt {|\pi|}^2$, the ordinal $\pi$ is isomorphic to one of the [[lower set|initial segments]] \begin{displaymath} S(a, b, c) \coloneqq \{(x, y, z) \in S: (x, y, z) \lt (a, b, c)\} \end{displaymath} of $S$, say $S(\alpha, \beta, \gamma)$. But then (regarding $\alpha$ as an ordinal less than $\pi$) \begin{displaymath} {|\pi|} = {|S(\alpha, \beta, \gamma)|} \leq {|S(\alpha, \alpha, \alpha)|} = {|\alpha|}^2 = {|\alpha|} \lt {|\pi|} \end{displaymath} which gives a contradiction. \end{proof} \begin{remark} \label{}\hypertarget{}{} Conversely, if (relative to ZF or any other standard set theory) we assume that any infinite set can be put in bijection with its cartesian square, then every set can be well-ordered, a result originally due to Tarski. Details may be found at [[Hartogs number]]. \end{remark} \begin{cor} \label{}\hypertarget{}{} If one of two non-zero cardinals $\kappa, \lambda$ is infinite, then \begin{displaymath} \kappa + \lambda = \kappa \cdot \lambda = \max \{\kappa, \lambda\}. \end{displaymath} \end{cor} \begin{proof} Clearly, $\kappa \leq \kappa + \lambda$ and $\lambda \leq \kappa + \lambda$, so $\max \{\kappa, \lambda\} \leq \kappa + \lambda$, and similarly for multiplication instead of addition, assuming the cardinals are non-zero. Letting $\mu = \max \{\kappa, \lambda\}$, we also have \begin{displaymath} \kappa \cdot \lambda \leq \mu \cdot \mu = \mu \end{displaymath} and similarly for addition instead of multiplication. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} Traditional lecture notes include \begin{itemize}% \item Alexandru Baltag, \emph{Axiomatix set theory lecture 8: Cardinal arithmetic} (\href{http://www.vub.ac.be/CLWF/SS/Sets8.pdf}{pdf}) \item \emph{Cardinal arithmetic} (\href{https://www.math.ksu.edu/~nagy/real-an/ap-b-card.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Planetmath, \emph{\href{http://planetmath.org/cardinalarithmetic}{cardinal arithmetic}} \end{itemize} The point of view of [[categorification]] is amplified in \begin{itemize}% \item [[Emily Riehl]], \emph{Categorifying cardinal arithmetic} (\href{http://www.math.jhu.edu/~eriehl/arithmetic.pdf}{pdf}) \end{itemize} \end{document}