\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cartesian monad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{cartesian_monads}{}\section*{{Cartesian monads}}\label{cartesian_monads} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{motivation_through_generalised_multicategories}{Motivation through generalised multicategories}\dotfill \pageref*{motivation_through_generalised_multicategories} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples_and_nonexamples}{Examples and Non-Examples}\dotfill \pageref*{examples_and_nonexamples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_operads}{Relation to operads}\dotfill \pageref*{relation_to_operads} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{discussion}{Discussion}\dotfill \pageref*{discussion} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{cartesian monad} is a [[monad]] on a [[locally cartesian category]] that preserves [[pullbacks]] and whose unit and multiplication are [[cartesian natural transformations]]. \hypertarget{motivation_through_generalised_multicategories}{}\subsection*{{Motivation through generalised multicategories}}\label{motivation_through_generalised_multicategories} Ordinary [[categories]] can be defined as [[monad|monads]] in the [[bicategory]] of [[spans]] of [[sets]]. Multicategories can be defined in a similar way. (A [[multicategory]] is like an ordinary category where each morphism has a list of objects as its domain, and a single object as its codomain; think [[Vect|vector spaces and multilinear maps]]). To see how a multicategory $C$ can be defined as a monad in some appropriate bicategory, let $C_0$ be the set of objects of $C$, and notice that the domain of a morphism of $C$--a finite list of objects--is an element of $T C_0$, where $T$ is the [[free monoid]] monad. In this way the data for $C$ can be conveniently organized in the diagram \begin{displaymath} \begin{matrix} &&C_1&&\\ &\overset{d}\swarrow& &\overset{c}\searrow&\\ T C_0 &&&& C_0. \end{matrix} \end{displaymath} [[Tom Leinster]] built on the idea of [[generalized multicategory|generalized multicategories]], where the domain of a morphism can have a more general, higher dimensional shape than just a list. This is accomplished by considering a category $\mathcal{E}$ other than $\mathrm{Set}$, and a monad $T$ on $\mathcal{E}$, and mimicking the above construction. So the data for a $T$-multicategory is a diagram in $\mathcal{E}$ like the one above. To state the structure required on the data for a $T$-multicategory, we want to define a bicategory in which the above span is an [[endomorphism]]. Then a $T$-multicategory will be such a span together with structure making it a monad in that bicategory. The bicategory is $\mathcal{E}_{(T)}$, the bicategory of $T$-spans in $\mathcal{E}$. Its objects are the objects of $\mathcal{E}$, and its morphisms are spans \begin{displaymath} \begin{matrix} &&M&&\\ &\overset{d}\swarrow& &\overset{c}\searrow&\\ T E &&&& E'. \end{matrix} \end{displaymath} This won't in general be a bicategory without a few extra assumptions. Identity spans are defined using the unit $\eta: \mathrm{Id}\to T$. Composition of spans is defined using [[pullbacks]] and the multiplication $\mu: T^2\to T$, so the category $\mathcal{E}$ must at least have pullbacks--usually it will be [[finitely complete category|finitely complete]]. The associativity and unit $2$-cells are defined using the universal property of the pullbacks. However, these $2$-cells won't in general be invertible. In fact, it turns out that requiring the monad $T$ to be \emph{cartesian} is exactly what is needed to ensure that the coherence $2$-cells are isomorphisms, and hence that $T$-spans do in fact form a bicategory. Maybe this should be the ``fundamental theorem of cartesian monads''. Extending B\'e{}nabou's observation that a [[small category]] is a monad in the bicategory of spans of sets, [[Burroni]] defined $T$-multicategories as \emph{monads in the bicategory} $\mathcal{E}_{(T)}$ from above. When $T$ is the [[identity monad]] on $\mathrm{Set}$, $T$-multicategories reduce to small categories, and when $T$ is the free monoid monad on $\mathrm{Set}$, $T$-multicatories are exactly ordinary small multicategories. As an indication of how this theory is useful as a language for higher categories, take $T$ to be the free [[strict ∞-category]] monad on the category of [[globular set]]s. Then $T$-multicategories with exactly one object are called [[globular operad]]s, and Leinster defines one such globular operad (the initial ``globular operad with contraction'') for which the algebras are [[weak ∞-categories]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} Let $(T, \mu, \nu)$ be a [[monad]] on a category $C$. Specifically, $T: C \to C$ is a functor, and $\mu: T^2 \to T$ and $\nu: \mathrm{Id}_C \to T$ are natural transformations, satisfying unital and associative axioms making $T$ a monoid in the (strict) monoidal category $\mathrm{End}(C)$. This monad is cartesian if \begin{itemize}% \item the category $C$ has all [[pullback]]s, \item the functor $T$ preserves pullbacks, \item the natural transformations $\mu$ and $\nu$ are [[cartesian natural transformation|cartesian]]. Recall that a natural transformation $\alpha: S \to T$ between functors $C \to D$ is cartesian if for each map $f: A \to B$ in $C$, the naturality square\begin{displaymath} \itexarray{ S A & \overset{S f}{\to} & S B \\ \alpha_A \downarrow & & \downarrow \alpha_B \\ T A & \underset{T f}{\to} & T B } \end{displaymath} is a pullback. \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} There is some slight inconsistency in the use of the word \emph{cartesian} in category theory. Sometimes, a category is called cartesian if it [[finitely complete category|has all finite limits]]; similarly, a functor is called cartesian if it [[exact functor|preserves all finite limit]]s. In most examples of cartesian monads, the category $C$ has a [[terminal object]], and hence finite limits. However, the functor $T$ almost never preserves terminal objects. For example, the free monoid monad on $\mathrm{Set}$ is cartesian, as can be checked directly, but $T 1 \simeq \mathbb{N}$ is not a terminal object. In this sense, a cartesian monad is really \emph{locally} cartesian. \end{remark} \hypertarget{examples_and_nonexamples}{}\subsection*{{Examples and Non-Examples}}\label{examples_and_nonexamples} \begin{itemize}% \item The [[free monoid]] monad $(-)^*: Set \to Set$ is cartesian. \item The [[free category]] monad acting on [[quivers]] is cartesian. \item The free strict $\omega$-[[strict omega-category|category]] monad acting on [[globular set]]s, $T: Set^{G^{op}} \to Set^{G^{op}}$, is cartesian. \item The [[free strict monoidal category]] monad on $\mathrm{Cat}$ is cartesian. \item The [[free symmetric strict monoidal category]] monad on $\mathrm{Cat}$ -- where all coherence cells are required to be identities \emph{except} the symmetries $A\otimes B \cong B \otimes A$ -- is cartesian. \end{itemize} BUT: \begin{itemize}% \item The [[free commutative monoid]] monad on $\mathrm{Set}$ is \textbf{NOT} cartesian. \item The [[free strict symmetric monoidal category]] monad on $\mathrm{Cat}$ -- where all the coherence cells are required to be identities \emph{including} the symmetry isomorphisms $A \otimes B \cong B \otimes A$ -- is \textbf{NOT} cartesian. In fact this is exactly the free commutative monoid monad on $\mathrm{Cat}$. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_operads}{}\subsubsection*{{Relation to operads}}\label{relation_to_operads} To every non-symmetric [[operad]], hence to every [[multicategory]] is associated a cartesian monad, such that the corresponding [[algebras over an operad]] coincide with the corresponding [[algebras over a monad]]. \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item Every [[p.r.a. monad]] is cartesian; these are sometimes called ``strongly cartesian monads''. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Tom Leinster]], \emph{Higher Operads, Higher Categories} (\href{http://arxiv.org/abs/math.CT/0305049}{arXiv:math.CT/0305049}), section 4.1 \item [[Albert Burroni]], \emph{$T$-cat\'e{}gories (cat\'e{}gories dans un triple)}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, 12 no. 3 (1971), p. 215-321 (\href{http://www.numdam.org/item?id=CTGDC_1971__12_3_215_0}{numdam}) \item \href{http://golem.ph.utexas.edu/category/2009/07/the_monads_hurt_my_head_but_no.html#c025402}{blog comment} giving the Motivation above \item MO, \emph{\href{http://mathoverflow.net/questions/66313/monad-arising-from-operad}{Monad arising from operad}} \item [[Clemens Berger]], [[Paul-André Melliès]], [[Mark Weber]], \emph{Monads with Arities and their Associated Theories} (2011) (\href{http://arxiv.org/abs/1101.3064}{arXiv:1101.3064}) \end{itemize} \hypertarget{discussion}{}\subsection*{{Discussion}}\label{discussion} Some past discussion about the term `cartesian' has been moved to [[locally cartesian category]]. [[!redirects cartesian monads]] [[!redirects Cartesian monad]] [[!redirects Cartesian monads]] \end{document}