\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cartesian space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{topological_structure}{Topological structure}\dotfill \pageref*{topological_structure} \linebreak \noindent\hyperlink{smooth_structures}{Smooth structures}\dotfill \pageref*{smooth_structures} \linebreak \noindent\hyperlink{the_category_of_cartesian_spaces}{The category of Cartesian spaces}\dotfill \pageref*{the_category_of_cartesian_spaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{udefn} A \textbf{Cartesian space} is a finite [[Cartesian product]] of the [[real line]] $\mathbb{R}$ with itself. Hence, a Cartesian space has the form $\mathbb{R}^n$ where $n$ is some [[natural number]] (possibly zero). This definition is silent on which category the real line $\mathbb{R}$ is being considered as an object of. For instance, if $\mathbb{R}$ is regarded as a topological space (hence an object in the category [[Top]]), then the topology on $\mathbb{R}^n$ is [[Euclidean|Euclidean topology]] the [[real line]] $\mathbb{R}$ with itself where $n$ is some [[natural number]]. Another possibility is to regard $\mathbb{R}$ as a smooth manifold (hence an object in the category [[Diff]]). The Cartesian space $\mathbb{R}^n$ with its standard topology (and sometimes smooth structure) is also called \textbf{real $n$-dimensional space} (distinguish from ``real $n$-dimensional vector space'' which is only isomorphic to it as a vector space). \end{udefn} One may also speak of the [[complexified]] cartesian space $\mathbb{C}^n$, or indeed of the cartesian space $K^n$ for any [[field]] $K$, or indeed for any [[set]] $K$, or indeed for any object $K$ of any [[cartesian monoidal category]]. \begin{uexample} In particular: \begin{itemize}% \item $\mathbb{R}^0$ is the [[point]], \item $\mathbb{R}^1$ is the [[real line]], \item $\mathbb{R}^2$ is the real [[plane]], which may be identified (in two canonical ways) with the [[complex number|complex plane]] $\mathbb{C}$. \end{itemize} \end{uexample} \begin{uremark} Cartesian spaces carry plenty of further canonical structure: \begin{itemize}% \item It is canonically a [[metric space]] and the [[Euclidean topology]] is the corresponding [[metric space|metric topology]]. \item There is a canonical [[smooth structure]] on $\mathbb{R}^n$ that makes it a [[smooth manifold]]. \item A Cartesian space is canonically a[[vector space]] over the [[field]] of [[real number]]s. \end{itemize} Sometimes one is interested in allowing $n$ to take other values, in which case one wants a [[product]] in some category that might not be the Cartesian product on underlying sets. For example, if one is studying Cartesian spaces as [[inner product space]]s, then one might want an $\aleph_0$-dimensional Cartesian space to be the $\aleph_0$-dimensional [[Hilbert space]] $l^2$, which is a proper subset of the cartesian product $\mathbb{R}^{\aleph_0}$. \end{uremark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{topological_structure}{}\subsubsection*{{Topological structure}}\label{topological_structure} The [[open n-ball]] is [[homeomorphic]] [[Cartesian space]] $\mathbb{R}^n$ \begin{displaymath} \mathbb{B}^n \simeq \mathbb{R}^n \,. \end{displaymath} \begin{itemize}% \item [[topological invariance of dimension]] \end{itemize} \hypertarget{smooth_structures}{}\subsubsection*{{Smooth structures}}\label{smooth_structures} For all $n \in \mathbb{N}$, the [[open n-ball]] with its standard [[smooth structure]] is [[diffeomorphic]] to the [[Cartesian space]] $\mathbb{R}^n$ with its standard smooth structure \begin{displaymath} \mathbb{B}^n \simeq \mathbb{R}^n \,. \end{displaymath} In fact, in $d \neq 4$ there is no choice: \begin{utheorem} For $n \in \mathbb{N}$ a [[natural number]] with $n \neq 4$, there is a unique (up to [[isomorphism]]) smooth structure on the [[Cartesian space]] $\mathbb{R}^n$. \end{utheorem} This was shown in (\hyperlink{Stallings}{Stallings}). \begin{utheorem} In $d = 4$ the analog of this statement is false. One says that on $\mathbb{R}^4$ there exist [[exotic smooth structure]]s. \end{utheorem} \begin{utheorem} In [[dimension]] $d \in \mathbb{N}$ for $d \neq 4$ we have: every open subset of $\mathbb{R}^d$ which is [[homeomorphic]] to $\mathbb{B}^d$ is also [[diffeomorphic]] to it. \end{utheorem} See the first page of (\hyperlink{Ozols}{Ozols}) for a list of references. \begin{uremark} In dimension 4 the analog statement fails due to the existence of [[exotic smooth structure]]s on $\mathbb{R}^4$. \end{uremark} \hypertarget{the_category_of_cartesian_spaces}{}\subsection*{{The category of Cartesian spaces}}\label{the_category_of_cartesian_spaces} See [[CartSp]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[super Cartesian space]] \item [[polydisk]] \item [[affine space]] \end{itemize} In [[complex geometry]] for purposes of [[Cech cohomology]] the role of Cartesian spaces is played by [[Stein manifolds]]. \begin{itemize}% \item [[topological invariance of dimension]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after [[René Descartes]]. \begin{itemize}% \item [[John Stallings]], \emph{The piecewise linear structure of Euclidean space} , Proc. Cambridge Philos. Soc. 58 (1962), 481-488. (\href{http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=2118140}{pdf}) \item V. Ozols, \emph{Largest normal neighbourhoods} , Proceedings of the American Mathematical Society Vol. 61, No. 1 (Nov., 1976), pp. 99-101 (\href{http://www.jstor.org/stable/2041672}{jstor}) \end{itemize} There are various slight variations of the category $CartSp$ that one can consider without changing its basic properties as a category of test spaces for [[generalized smooth space]]s. A different choice that enjoys some popularity in the literature is the category of open (contractible) subsets of Euclidean spaces. For more references on this see [[diffeological space]]. The [[site]] $ThCartSp$ of infinitesimally thickened Cartesian spaces is known as the site for the [[Cahiers topos]]. It is considered in detal in section 5 of \begin{itemize}% \item [[Anders Kock]], \emph{Convenient vector spaces embed into the Cahiers topos} (\href{http://www.numdam.org/item?id=CTGDC_1986__27_1_3_0}{numdam}) \end{itemize} and briefly mentioned in example 2) on p. 191 of \begin{itemize}% \item [[Anders Kock]], \emph{Synthetic differential geometry} (\href{http://home.imf.au.dk/kock/sdg99.pdf}{pdf}) \end{itemize} following the original article \begin{itemize}% \item [[Eduardo Dubuc]], \emph{Sur les modeles de la geometrie differentielle synthetique} (\href{http://www.numdam.org/item?id=CTGDC_1979__20_3_231_0}{numdam}). \end{itemize} With an eye towards [[Frölicher space]]s the site is also considered in section 5 of \begin{itemize}% \item Hirokazu Nishimura, \emph{Beyond the Regnant Philosophy of Manifolds} (\href{http://arxiv.org/abs/0912.0827}{arXiv:0912.0827}) \end{itemize} [[!redirects Cartesian space]] [[!redirects cartesian spaces]] [[!redirects Cartesian spaces]] [[!redirects real n-dimensional space]] \end{document}