\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{categorical homotopy groups in an (infinity,1)-topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] This is a sub-entry of [[homotopy groups in an (∞,1)-topos]]. For the other notion of homotopy groups see [[geometric homotopy groups in an (∞,1)-topos]]. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{of_objects}{Of objects}\dotfill \pageref*{of_objects} \linebreak \noindent\hyperlink{of_morphisms}{Of morphisms}\dotfill \pageref*{of_morphisms} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{in_}{In $\infty Grpd$}\dotfill \pageref*{in_} \linebreak \noindent\hyperlink{of_homotopy_groups_of_morphisms}{Of homotopy groups of morphisms}\dotfill \pageref*{of_homotopy_groups_of_morphisms} \linebreak \noindent\hyperlink{behaviour_under_geometric_morphisms}{Behaviour under geometric morphisms}\dotfill \pageref*{behaviour_under_geometric_morphisms} \linebreak \noindent\hyperlink{connected_and_truncated_objects}{Connected and truncated objects}\dotfill \pageref*{connected_and_truncated_objects} \linebreak \noindent\hyperlink{models}{Models}\dotfill \pageref*{models} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Recall that since an [[(∞,1)-topos]] $\mathbf{H}$ has all [[limits in a quasi-category|limits]], it is naturally \href{http://ncatlab.org/nlab/show/limit+in+a+quasi-category#Tensoring}{powered over ∞Grpd}: \begin{displaymath} (-)^{(-)} : \infty Grpd^{op} \times \mathbf{H} \to \mathbf{H} \,. \end{displaymath} Let $S^n = \partial \Delta[n+1]$ (or $S^n := Ex^\infty \partial \Delta[n+1]$) be the ([[Kan fibrant replacement]]) of the [[boundary of a simplex|boundary of the (n+1)-simplex]], i.e. the model in [[∞Grpd]] of the [[pointed object|pointed]] $n$-[[sphere]]. Then for $X \in \mathbf{H}$ an object, the power object $X^{S^n} \in \mathbf{H}$ plays the role of the space of of maps from the $n$-sphere into $X$, as in the definition of [[simplicial homotopy groups]], to which this reduces in the case that $\mathbf{H} =$ [[∞Grpd]]. By powering the canonical morphism $i_n : * \to S^n$ induces a morphism \begin{displaymath} X^{i_n} : X^{S^n} \to X \end{displaymath} which is restriction to the basepoint. This morphism may be regarded as an object of the [[over quasi-category|over]] [[(∞,1)-topos]] $\mathbf{H}_{/X}$. \hypertarget{of_objects}{}\subsubsection*{{Of objects}}\label{of_objects} \begin{defn} \label{}\hypertarget{}{} \textbf{(categorical homotopy groups)} For $n \in \mathbb{N}$ define \begin{displaymath} \pi_n(X) := \tau_{\leq 0} X^{i_n} \in \mathbf{H}_{/X} \end{displaymath} to be the [[n-truncated object of an (infinity,1)-topos|0-truncation]] of the object $X^{i_n}$. \end{defn} Passing to the 0-truncation here amounts to dividing out the [[homotopy|homotopies]] between maps from the $n$-sphere into $X$. The [[n-truncated object of an (infinity,1)-topos|0-truncated]] objects in $\mathbf{H}_{/X}$ have the interpretation of [[sheaf|sheaves]] on $X$. So in the world of [[∞-stack]]s a homotopy [[group object]] is a [[sheaf]] of groups. To see that there is indeed a group structure on these \emph{homotopy sheaves} as usual, notice from the general properties of [[power]]ing we have that \begin{displaymath} X^{S^k \coprod_* S^l} \simeq X^{S_k} \times_X X^{S_l} \,. \end{displaymath} From the we have that $\tau_{\leq n} : \mathbf{H} \to \mathbf{H}$ preserves such finite [[product]]s so that also \begin{displaymath} \tau_{\leq 0} X^{* \to S^k \coprod_* S^l} \simeq (\tau_{\leq 0} X^{* \to S^k} ) \times (\tau_{\leq 0}) X^{* \to S^k} \,. \end{displaymath} Therefore the [[cogroup]] operations $S^n \to S^n \coprod_* S^n$ induce group operations \begin{displaymath} \pi_n(X) \times \pi_n(X) \to \pi_n(X) \end{displaymath} in the [[sheaf topos]] $\tau_{\leq 0} \mathbf{H}_{/X}$. By the usual argument about [[homotopy group]]s, these are trivial for $n = 0$ and [[abelian group|abelian]] for $n \geq 2$. \hypertarget{of_morphisms}{}\subsubsection*{{Of morphisms}}\label{of_morphisms} It is frequently useful to speak of homotopy groups of a [[morphism]] $f : X \to Y$ in an $(\infty,1)$-topos \begin{defn} \label{}\hypertarget{}{} \textbf{(homotopy groups of morphisms)} For $f : X \to Y$ a [[morphism]] in an [[(∞,1)-topos]] $\mathbf{H}$, its \emph{homotopy groups} are the homotopy groups in the above sense of $f$ regarded as an object of the [[over quasi-category|over (∞,1)-category]] $\mathbf{H}_{/Y}$. \end{defn} So the homotopy sheaf $\pi_n(f)$ of a morphism $f$ is an object of the [[over quasi-category|over (∞,1)-category]] $Disc((\mathbf{H}_{/Y})_{/f}) \simeq Disc(\mathbf{H}_{/f})$. This in turn is equivalent to $\cdots \simeq \mathbf{H}_{/X}$ by the map that sends an object \begin{displaymath} \itexarray{ && Q \\ & \swarrow && \searrow \\ X &&\stackrel{f}{\to}&& Y } \end{displaymath} in $\mathbf{H}_{/f}$ to \begin{displaymath} \itexarray{ && Q \\ & \swarrow \\ X } \,. \end{displaymath} The intuition is that the homotopy sheaf $\pi_n(f) \in Disc(\mathbf{H}_{/X})$ over a basepoint $x : * \in X$ is the homotopy group of the [[nLab:homotopy fiber]] of $f$ containing $x$ at $x$. \begin{example} \label{}\hypertarget{}{} If $Y = *$ then there is an essentially unique morphism $f : X \to *$ whose [[homotopy fiber]] is $X$ itself. Accordingly $\pi_n(f) \simeq \pi_n(X)$. \end{example} \begin{example} \label{}\hypertarget{}{} If $X = *$ then the morphism $f : * \to Y$ is a point in $Y$ and the single [[homotopy fiber]] of $f$ is the [[loop space object]] $\Omega_f Y$. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{in_}{}\subsubsection*{{In $\infty Grpd$}}\label{in_} For the case that $\mathbf{H} =$ [[∞Grpd]] $\simeq$ [[Top]], the $(\infty,1)$-topos theoretic definition of categorical homotopy groups in $\mathbf{H}$ reduces to the ordinary notion of [[homotopy group]]s in [[Top]]. For $\infty Grpd$ modeled by [[Kan complex]]es or the standard [[model structure on simplicial sets]], it reduces to the ordinary definition of [[simplicial homotopy group]]s. \hypertarget{of_homotopy_groups_of_morphisms}{}\subsubsection*{{Of homotopy groups of morphisms}}\label{of_homotopy_groups_of_morphisms} The definition of the homotopy groups of a morphism $f : X \to Y$ is equivalent to the following recursive definition \begin{defn} \label{}\hypertarget{}{} \textbf{(recursive homotopy groups of morphisms)} For $n \geq 1$ we have \begin{displaymath} \pi_n(f) \simeq \pi_{n-1}(X \to X \times_Y X) \;\;\; \in Disc(\mathbf{H}_{/X}) \,. \end{displaymath} \end{defn} This is [[Higher Topos Theory|HTT, remark 6.5.1.3]]. This is the generalization of the familiar fact that [[loop space object]]s have the same but shifted homotopy groups: In the special case that $X = *$ and $f$ is $f : * \to Y$ we have $X \times_Y X = \Omega_f Y$ and $X \to X \times_Y X$ is just $* \to \Omega_f Y$, so that \begin{displaymath} \pi_n(f) = \pi_n(Y) \end{displaymath} and \begin{displaymath} \pi_{n-1}(X \to X \times_Y X) \simeq \pi_{n-1} \Omega_f Y \,. \end{displaymath} \begin{prop} \label{}\hypertarget{}{} Given a sequence of morphisms $X \stackrel{f}{\to}Y \stackrel{g}{\to} Z$ in $\mathbf{H}$, there is a [[long exact sequence]] \begin{displaymath} \cdots \to f^* \pi_{n+1}(g) \stackrel{\delta_{n+1}}{\to} \pi_n(f) \stackrel{g \circ f}{\to} \to f^* \pi_n(g) \stackrel{\delta_n}{\to} \pi_{n-1}(f) \to \cdots \end{displaymath} in the [[topos]] $Disc(\mathbf{H}_{/X})$. \end{prop} This is [[Higher Topos Theory|HTT, remark 6.5.1.5]]. \hypertarget{behaviour_under_geometric_morphisms}{}\subsubsection*{{Behaviour under geometric morphisms}}\label{behaviour_under_geometric_morphisms} \begin{prop} \label{}\hypertarget{}{} Geometric morphisms of $(\infty,1)$-topos preserve homotopy groups. If $k : \mathbf{H} \to \mathbf{K}$ is a [[geometric morphism]] of $(\infty,1)$-toposes then for $f : X \to Y$ any morphism in $\mathbf{H}$ there is a canonical [[isomorphism]] \begin{displaymath} k^* (\pi_n(f)) \simeq \pi_n(k^* f) \end{displaymath} in $Disc(\mathbf{H}_{/k^* Y})$. \end{prop} This is [[Higher Topos Theory|HTT, remark 6.5.1.4]]. \hypertarget{connected_and_truncated_objects}{}\subsubsection*{{Connected and truncated objects}}\label{connected_and_truncated_objects} Let $X \in \mathbf{H}$. \begin{itemize}% \item The object $X$ is \textbf{$n$-[[truncated]]} if it is a [[n-truncated object in an (∞,1)-category|k-truncated object]] for some $k \gt n$ and if all its categorical homotopy groups above degree $n$ vanish. Every object decomposes as a sequence of $n$-truncated objects: the [[Postnikov tower in an (∞,1)-category]]. \item The object $X$ is \textbf{$n$-[[connected]]} if the terminal morphism $X \to *$ is an [[effective epimorphism]] and if all categorical homotopy groups below degree $n$ are trivial. \item The object $X$ is an \textbf{[[Eilenberg-MacLane object]]} of degree $n$ if it is both $n$-connected and $n$-truncated. \end{itemize} \hypertarget{models}{}\subsection*{{Models}}\label{models} When the [[(∞,1)-topos]] $\mathbf{H}$ is [[presentable (∞,1)-category|presented]] by a [[model structure on simplicial presheaves]] $[C^{op}, sSet]_{loc}$, then since this is an [[sSet]]-[[enriched model category]] structure the [[power]]ing by $\infty Grpd$ is modeled, as described at, by the ordinary powering \begin{displaymath} sSet^{op} \times [C^{op}, sSet] \to [C^{op}, sSet] \,, \end{displaymath} which is just objectwise the [[internal hom]] in [[sSet]]. Therefore the $(\infty,1)$-topos theoretical homotopy sheaves of an object in $([C^{op}, sSet]_{loc})^\circ$ are given by the following construction: For $X \in [C^{op}, sSet]$ a presheaf, write \begin{itemize}% \item $\pi_0(X) \in [C^{op},Set]$ for the presheaf of connected components; \item $\pi_n(X) = \coprod_{[x] \in \pi_0(X)} \pi_n(X,x)$ for the presheaf of [[simplicial homotopy group]]s with $n \geq 1$; \item $\bar \pi_n(X) \to \bar \pi_0(X)$ for the [[sheafification]] of these presheaves. \end{itemize} Then these $\bar \pi_n(X) \to \bar \pi_0(X)$ are the sheaves of categorical homotopy groups of the object represented by $X$. This definition of homotopy sheaves of [[simplicial presheaves]] is familiar from the Joyal-Jardine [[local model structure on simplicial presheaves]]. See for instance \href{http://www.math.uwo.ca/~jardine/papers/Fields-01.pdf#page=4}{page 4} of \href{http://www.math.uwo.ca/~jardine/papers/Fields-01.pdf}{Jard07}. \begin{quote}% this needs more discussion \end{quote} \hypertarget{references}{}\subsection*{{References}}\label{references} The intrinsic $(\infty,1)$-theoretic description is the topic of section 6.5.1 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} . \end{itemize} The model in terms of the [[model structure on simplicial presheaves]] is duscussed for instance in \begin{itemize}% \item [[Rick Jardine]], \emph{Simplicial presheaves} (\href{http://www.math.uwo.ca/~jardine/papers/Fields-01.pdf#page=4}{page 4}) \end{itemize} [[!redirects categorical homotopy groups in an (∞,1)-topos]] [[!redirects homotopy sheaf]] [[!redirects homotopy sheaves]] [[!redirects categorical homotopy groups in an infinity-topos]] [[!redirects categorical homotopy groups]] \end{document}