\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{categories with finite products are cosifted} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A basic example of [[limits commuting with colimits]] in [[category theory]] is that [[colimits]] over [[opposite categories]] of categories with [[finite products]] preserves [[finite products]]. One says equivalently that categories with [[finite products]] are \emph{[[cosifted categories]]}. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \begin{example} \label{CategoriesWithFiniteProductsAreCosifted}\hypertarget{CategoriesWithFiniteProductsAreCosifted}{} \textbf{([[categories with finite products are cosifted]]} Let $\mathcal{C}$ be a [[small category]] which has [[finite products]]. Then $\mathcal{C}$ is a \emph{[[cosifted category]]}, equivalently its [[opposite category]] $\mathcal{C}^{op}$ is a \emph{[[sifted category]]}, equivalently [[colimits]] over $\mathcal{C}^{op}$ with values in [[Set]] are \emph{[[sifted colimits]]}, equivalently [[colimits]] over $\mathcal{C}^{op}$ with values in [[Set]] \emph{[[limits commuting with colimits|commute]] with [[finite products]]}, as follows: For $\mathbf{X}, \mathbf{Y} \in [\mathcal{C}^{op}, Set]$ to [[functors]] on the [[opposite category]] of $\mathcal{C}$ (hence two [[presheaves]] on $\mathcal{C}$) we have a [[natural isomorphism]] \begin{displaymath} \underset{\underset{\mathcal{C}^{op}}{\longrightarrow}}{\lim} \left( \mathbf{X} \times \mathbf{Y} \right) \;\simeq\; \left( \underset{\underset{\mathcal{C}^{op}}{\longrightarrow}}{\lim} \mathbf{X} \right) \times \left( \underset{\underset{\mathcal{C}^{op}}{\longrightarrow}}{\lim} \mathbf{Y} \right) \,. \end{displaymath} \end{example} \begin{proof} First observe that for $\mathbf{X}, \mathbf{Y} \in [\mathcal{C}^{op}, Set]$ two [[presheaves]], their [[Cartesian product]] is a [[colimit]] over [[representable presheaf|presheaves represented]] by Cartesian products in $\mathcal{C}$. Explicity, using [[coend]]-notation, we have: \begin{equation} \mathbf{X} \times \mathbf{Y} \;\simeq\; \int^{c_1,c_2 \in \mathcal{C}} y(c_1 \times c_2) \times \mathbf{X}(c_1) \times \mathbf{Y}(c_2) \,, \label{OnSiteWithProductsExpandProductOfPresheaves}\end{equation} where $y \;\colon\; \mathcal{C} \hookrightarrow [\mathcal{C}^{op}, Set]$ denotes the [[Yoneda embedding]]. This is due to the following sequence of [[natural isomorphisms]]: \begin{displaymath} \begin{aligned} (\mathbf{X} \times \mathbf{Y})(c) & \simeq \left( \int^{c_1 \in \mathcal{C}} \mathcal{C}(c,c_1) \times \mathbf{X}(c_1) \right) \times \left( \int^{c_2 \in \mathcal{C}} \mathcal{C}(c,c_2) \times \mathbf{Y}(c_2) \right) \\ & \simeq \int^{c_1 \in \mathcal{C}} \int^{c_2 \in \mathcal{C}} \underset{ \simeq \mathcal{c}(c, c_1 \times c_2) }{ \underbrace{ \mathcal{C}(c,c_1) \times \mathcal{C}(c,c_2) }} \times \left( \mathbf{X}(c_1) \times \mathbf{X}(c_2) \right) \\ & \simeq \int^{c_1 \in \mathcal{C}} \int^{c_2 \in \mathcal{C}} \mathcal{C}(c,c_1 \times c_2) \times \mathbf{X}(c_1) \times \mathbf{X}(c_2) \,, \end{aligned} \end{displaymath} where the first step expands out both presheaves as colimits of representables separately, via the [[co-Yoneda lemma]], the second step uses that the [[Cartesian product]] of presheaves is a two-variable [[left adjoint]] (by the [[symmetric monoidal category|symmetric]] [[closed monoidal structure on presheaves]]) and [[adjoints preserve (co-)limits|as such preserves colimits]] (in particular [[coends]]) in each [[variable]] separately, and under the brace we use the defining [[universal property]] of the [[Cartesian products]], assumed to exist in $\mathcal{C}$. Now observe that the [[colimit]] of a [[representable presheaf]] is the [[singleton]]. \begin{equation} \underset{\underset{\mathcal{D}^{op}}{\longrightarrow}}{\lim} y(c) \;\simeq\; \ast \,. \label{ColimitOfRepresentableIsSingleton}\end{equation} One way to see this is to regard the colimit as the [[left Kan extension]] along the unique functor $\mathcal{C}^{op} \overset{p}{\to} \ast$ to the [[terminal category]]. By the formula \href{Kan+extension#PointwiseByCoEnds}{there}, this yields \begin{displaymath} \begin{aligned} \underset{\underset{\mathcal{D}^{op}}{\longrightarrow}}{\lim} y(c) & \simeq \int^{c_1 \in \mathcal{C}} \underset{const_\ast(c_1)}{\underbrace{\ast(-,p(c_1))}} \times y(c)(c_1) \\ & \simeq \int^{c_1 \in \mathcal{C}} const_\ast(c_1) \times \mathcal{C}(c_1,c) \\ & \simeq const_\ast(c) \\ & \simeq \ast \end{aligned} \end{displaymath} where we made explicit the [[constant functor]] $const_\ast \;\colon\; \mathcal{C} \to Set$, constant on the [[singleton]] set $\ast$, and then applied the [[co-Yoneda lemma]]. Using this, we compute for $\mathbf{X}, \mathbf{Y} \in [\mathcal{C}^{op}, Set]$ the following sequence of [[natural isomorphisms]]: \begin{displaymath} \begin{aligned} \underset{\underset{\mathcal{D}^{op}}{\longrightarrow}}{\lim} \left( \mathbf{X} \times \mathbf{Y} \right) & \simeq \underset{\underset{\mathcal{D}^{op}}{\longrightarrow}}{\lim} \int^{c_1,c_2 \in \mathcal{C}} y(c_1 \times c_2) \times \mathbf{X}(c_1) \times \mathbf{Y}(c_2) \\ & \simeq \int^{c_1,c_2 \in \mathcal{C}} \underset{\underset{\mathcal{D}^{op}}{\longrightarrow}}{\lim} \left( y(c_1 \times c_2) \times \mathbf{X}(c_1) \times \mathbf{Y}(c_2) \right) \\ & \simeq \int^{c_1,c_2 \in \mathcal{C}} \left( \underset{ \simeq \ast }{ \underbrace{ \underset{\underset{\mathcal{D}^{op}}{\longrightarrow}}{\lim} y(c_1 \times c_2) }} \right) \times \mathbf{X}(c_1) \times \mathbf{Y}(c_2) \\ & \simeq \int^{c_1,c_2 \in \mathcal{C}} \left( \mathbf{X}(c_1) \times \mathbf{Y}(c_2) \right) \\ & \simeq \left( \int^{c_1\in \mathcal{C}} \mathbf{X}(c_1) \right) \times \left( \int^{c_2\in \mathcal{C}} \mathbf{Y}(c_2) \right) \\ & \simeq \left( \underset{\underset{\mathcal{C}^{op}}{\longrightarrow}}{\lim} \mathbf{X} \right) \times \left( \underset{\underset{\mathcal{C}^{op}}{\longrightarrow}}{\lim} \mathbf{Y} \right) \end{aligned} \end{displaymath} Here the first step is \eqref{OnSiteWithProductsExpandProductOfPresheaves}, the second uses that [[colimits commute with colimits]], the third uses again that the [[Cartesian product]] respects colimits in each variable separately, the fourth is \eqref{ColimitOfRepresentableIsSingleton}, the last step is again the respect for colimits of the Cartesian product in each variable separately. \end{proof} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item In the definiton of \emph{[[cohesive site]]} and \emph{[[infinity-cohesive site]]}, the assumption that the site has finite products (more generally: is [[cosifted category|cosifted]]) is what guarantees that the induced [[shape modality]] preserves finite products, as (usually) required for a [[cohesive topos]] or [[cohesive (infinity,1)-topos]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[commutativity of limits and colimits]] \end{itemize} \end{document}