\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{category of elements} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{representable_presheaves}{Representable Presheaves}\dotfill \pageref*{representable_presheaves} \linebreak \noindent\hyperlink{action_groupoid}{Action Groupoid}\dotfill \pageref*{action_groupoid} \linebreak \noindent\hyperlink{category_of_simplices}{Category of simplices}\dotfill \pageref*{category_of_simplices} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{reference}{Reference}\dotfill \pageref*{reference} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{category of elements} of a [[functor]] $F : C \to$ [[Set]] is a [[category]] $el(F) \to C$ sitting over the [[domain]] [[category]] $C$, such that the [[fiber]] over an [[object]] $c \in C$ is the set $F(c)$. This is a special case of the [[Grothendieck construction]], by considering sets as discrete categories. We may think of [[Set]] as the [[classifying space]] of ``[[Set]]-bundles;'' see [[generalized universal bundle]]. The category of elements of $F$ is, in this sense, the [[Set]]-bundle classified by $F$. It comes equipped with a projection to $C$ which is a [[discrete opfibration]], and provides an equivalence between $Set$-valued functors and discrete opfibrations. (There is a dual category of elements that applies to contravariant $Set$-valued functors, i.e. [[presheaves]], and produces [[discrete fibrations]].) Forming a category of elements can be thought of as ``unpacking'' a [[concrete category]]. For example, consider a concrete category $C$ consisting of two objects $X,Y$ and two non-trivial morphisms $f,g$ The individual elements of $X,Y$ are ``unpacked'' and become objects of the new category. The ``unpacked'' morphisms are inherited in the obvious way from morphisms of $C$. Note that an ``unpacked'' category of elements can be ``repackaged''. The generalization of the category of elements for functors landing in [[Cat]], rather than just $Set$, is called the [[Grothendieck construction]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a functor $P:C\to\mathbf{Set}$, the \textbf{category of elements} $el(P)$ or $El_P(C)$ (or obvious variations) may be understood in any of these equivalent ways: \begin{itemize}% \item It is the [[category]] whose objects are pairs $(c,x)$ where $c$ is an object in $C$ and $x$ is an element in $P(c)$ and morphisms $(c,x)\to(c',x')$ are morphisms $u:c\to c'$ such that $P(u)(x) = x'$. \item It is the [[pullback]] along $P$ of the [[generalized universal bundle|universal Set-bundle]] $U : Set_* \to Set$ \begin{displaymath} \itexarray{ El_P(C) &\to& Set_* \\ \downarrow^{\mathrlap{\pi_P}} && \downarrow^\mathrlap{U} \\ C &\to& Set }\,, \end{displaymath} where $U$ is the [[forgetful functor]] from [[pointed set|pointed sets]] to sets. \item It is the [[comma category]] $(*/P)$, where $*$ is the inclusion of the one-point set $*:*\to Set$ and $P:C\to Set$ is itself: \begin{displaymath} \itexarray{ El_P(C) &\to& * \\ \downarrow^{\mathrlap{\pi_P}} &\Downarrow& \downarrow^{\mathrlap{pt}} \\ C &\to& Set } \end{displaymath} \item Its [[opposite category|opposite]] is the [[comma category]] $(Y/P)$, where $Y$ is the [[Yoneda embedding]] $C^{op}\to [C,Set]$ and $P$ is the functor $*\to [C,Set]$ which picks out $P$ itself: \begin{displaymath} \itexarray{ El_P(C)^{op} &\overset{\pi_P^{op}}{\to}& C^{op} \\ \downarrow &\Downarrow& \downarrow^{\mathrlap{Y}} \\ * & \underset{P}{\to}& [C,Set] } \end{displaymath} $El_P(C)$ is also often written with [[end|coend]] notation as $\int^C P$, $\int^{c: C} P(c)$, or $\int^c P(c)$. This suggests the fact the set of objects of the category of elements is the [[disjoint union]] (sum) of all of the sets $P(c)$. \item It is the (strict) [[oplax colimit]] of the composite $C \xrightarrow{P} \mathbf{Set} \xrightarrow{disc} \mathbf{Cat}$; see [[Grothendieck construction]]. \end{itemize} When $C$ is a [[concrete category]] and the functor $F:C\to Set$ is simply the [[forgetful functor]], we can define a functor \begin{displaymath} Explode(-) := El_F(-). \end{displaymath} This is intended to illustrate the concept that constructing a category of elements is like ``unpacking'' or ``exploding'' a category into its elements. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The category of elements defines a functor $el : \mathbf{Set}^{C} \to \mathbf{Cat}$. This is perhaps most obvious when viewing it as an oplax colimit. Furthermore we have: \begin{theorem} \label{ColimitPreserving}\hypertarget{ColimitPreserving}{} The functor $el : \mathbf{Set}^{C} \to \mathbf{Cat}$ is [[cocontinuous functor|cocontinuous]]. \end{theorem} \begin{proof} As remarked above, $el$ is a strict [[weighted colimit]] [[2-colimit]], hence we have an isomorphism \begin{displaymath} el(P) \cong \int^{c\in C} J(c) \times disc(P(c)) \end{displaymath} where the weight $J:C^{op} \to \mathbf{Cat}$ is the functor $c\mapsto c/C$, and $disc:\mathbf{Set}\hookrightarrow \mathbf{Cat}$ is the inclusion of the [[discrete categories]]. But since $disc$ (regarded purely as a 1-functor) has a right adjoint (the functor which sends a -small- category $C$ into its set of elements $C_0$), it preserves (1-categorical) colimits. Since colimits also commute with colimits, the composite operation $\el$ also preserves colimits. \end{proof} \begin{theorem} \label{ColimitPreserving2}\hypertarget{ColimitPreserving2}{} The functor $el\colon \mathbf{Set}^{C} \to \mathbf{Cat}$ has a right adjoint (which is maybe a more direct way to see that it is cocontinuous). \end{theorem} \begin{proof} By a simple coend computation \begin{displaymath} \begin{array}{rl} \mathbf{Cat}(el(F),D)&\cong \mathbf{Cat}\Big( \int^c J c\times\delta(P c), D\Big)\\ &\cong \int_c\mathbf{Cat}\big(J c\times \delta(F c),D\big)\\ &\cong \int_c \mathbf Sets\big(F c,[J c,D]_0\big)\\ &\cong \mathbf{Set}^{C}(F, K(D)) \end{array} \end{displaymath} where $K(D)\colon c\mapsto [J c,D]_0$. \end{proof} Now for any $C$, the terminal object of $\mathbf{Set}^C$ is the functor $\Delta 1$ constant at the [[point]]. The category of elements of $\Delta 1$ is easily seen to be just $C$ itself, so the unique transformation $P\to \Delta 1$ induces a \emph{projection functor} $\pi_P: \el(P) \to C$ defined by $(c,x)\mapsto c$ and $u\mapsto u$. The projection functor is a [[discrete opfibration]], and can be viewed also as a $C$-indexed [[family of sets]]. When we regard $\el(P)$ as equipped with $\pi_P$, we have an embedding of $\mathbf{Set}^C$ into $\mathbf{Cat}/C$. Note that while the canonical projection $\operatorname{El}(F) \to \mathbf{C}$ is surjective on objects, it is not usually [[full functor|full]]. For example, let $\mathbf{B}\mathbb{N}$ be the one-object category which carries the monoid $(\mathbb{N}, +)$ as its endomorphism monoid, and let $F$ be the action of $(\mathbb{N}, +)$ on the set $\mathbb{N}$ by $n.m = m + n$. Then the image of any hom-set between $k, k'$ is a singleton subset of $\mathbb{N}$. More generally, the [[universal covering groupoid]] of a groupoid is just the category of elements of its action on itself by composition. Since this action is faithful and transitive, hom-sets in the category of elements are always $0$ or $1$, while objects in the groupoid might have nontrivial automorphism groups. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{representable_presheaves}{}\subsubsection*{{Representable Presheaves}}\label{representable_presheaves} Let $Y(C):\mathcal{C}^{op}\to Set$ be a [[representable functor|representable presheaf]] with $Y(C)(D)=Hom_{\mathcal{C}}(D,C)$. Consider the contravariant category of elements $\int_\mathcal{C} Y(C)$ . This has objects $(D_1,p_1)$ with $p_1\in Y(C)(D_1)$, hence $p_1$ is just an arrow $D_1\to C$ in $\mathcal{C}$. A map from $(D_1, p_1)$ to $(D_2, p_2)$ is just a map $u:D_1\to D_2$ such that $p_2\circ u =p_1$ but this is just a morphism from $p_1$ to $p_2$ in the [[overcategory|slice category]] $\mathcal{C}/C$. Accordingly we see that $\int_\mathcal{C} Y(C)\simeq \mathcal{C}/C$ . This equivalence comes in handy when one wants to compute [[category of presheaves|slices of presheaf toposes]] over representable presheaves $Y(C)$ since $PSh(\int_\mathcal{C} P) \simeq PSh(\mathcal{C})/P$ in general for presheaves $P:\mathcal{C}^{op}\to Set$ , whence $PSh(\mathcal{C})/Y(C) \simeq PSh(\mathcal{C}/C)$ . An instructive example of this construction is spelled out in detail at [[hypergraph]]. \hypertarget{action_groupoid}{}\subsubsection*{{Action Groupoid}}\label{action_groupoid} In the case that $C = \mathbf{B}G$ is the [[delooping]] [[groupoid]] of a [[group]] $G$, a functor $\varrho : \mathbf{B}G \to Set$ is a [[permutation representation]] $X$ of $G$ and its category of elements is the corresponding [[action groupoid]] $X/\!/G$. \begin{proof} This is easily seen in terms of the characterization $el(\varrho)\cong (*/\varrho)$, the category having as objects triples $(*,*; *\to \varrho(*)=X)$, namely elements of the set $X=\varrho(*)$, and as arrows $x\to y$ those $g\in \mathbf{B}G$ such that \begin{displaymath} \itexarray{ {*} & \overset{x}{\to} & X \\ {}^1\downarrow && \downarrow^g\\ {*} & \underset{y}{\to} & X } \end{displaymath} commutes, namely $g . x=\varrho(g)(x)=y$. We can also present the right adjoint to $el(-)$: one must consider the functor $J\colon \mathbf{B}G^{op}\to \mathbf{Cat}$, which represents $G$ in $\mathbf{Cat}$, and sends the unique object $*\in \mathbf{B}G$ to $*/\mathbf{B}G\cong G/\!/G$, the \emph{left} action groupoid of $G$. The functor $J$ sends $h\in G$ to an automorphism of $G/\!/G$, obtained multiplying \emph{on the right} $x\to g x$ to $x h\to x g h$. Now for any category $D$, $K( D)(*)$ is exactly the set of functors $[G/\!/G, D]$, which inherits from $G/\!/G$ an obvious action: given $F\in [G/\!/G, D]$ we define $F^h=J(h)^*F=F \circ J(h) \colon g \mapsto F(g h)$. \end{proof} \hypertarget{category_of_simplices}{}\subsubsection*{{Category of simplices}}\label{category_of_simplices} For a [[simplicial set]] regarded as a [[presheaf]] on the [[simplex category]], the corresponding category of elements is called its \emph{[[category of simplices]]}. See there for more. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Grothendieck construction]] \item [[(∞,1)-Grothendieck construction]] \item [[semi-direct product]] \end{itemize} \hypertarget{reference}{}\subsection*{{Reference}}\label{reference} A very nice introduction emphasizing the connections to [[monoid|monoid theory]] is ch. 12 of \begin{itemize}% \item [[Michael Barr]], [[Charles Wells]], \emph{Category Theory for Computing Science} , Prentice Hall 1995$^3$. (\href{http://www.tac.mta.ca/tac/reprints/articles/22/tr22abs.html}{TAC reprints no.22 (2012)}) \end{itemize} [[!redirects Exploding a Category]] \end{document}