\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{category of generalized elements} \hypertarget{idea}{}\section*{{Idea}}\label{idea} Given a collection of ``parameterized objects'', i.e. a [[functor]] $F : C \to D$, it is often of interest to consider the category whose objects are [[generalized elements]] of the objects of $D$ in the image of $F$, and whose morphisms are the maps between these generalized elements induced by the value of $F$ on morphisms in $C$. For $D =$ [[Set]] and and with [[generalized element]] read as ``ordinary element of a set'' is yields the [[category of elements]] of the (co)[[presheaf]] $F : C \to D$. Moreover, the description of of the [[category of elements]] of a presheaf in terms of a pullback of a [[generalized universal bundle]] generalizes directly to categories of generalized elements. \hypertarget{definition}{}\section*{{Definition}}\label{definition} Let $D$ be a [[pointed object]] in [[Cat]], i.e. a [[category]] equipped with a choice $pt_D : {*} \to D$ of one of its objects. Recall that a morphism $pt_D \to d$ in $D$ may be called a [[generalized element]] in $D$ ``with domain of definition'' being the object $pt_D$. For instance if $D =$ [[Set]] the canonical choice is $pt_{Set} = {*}$ [[generalized the|the]] set with a single element. Generalized elements of a set ``with domain of definition'' ${*}$ are just the ordinary elements of a set. Notice that the [[over category]] $({pt_D/D})$ is the category of generalized elements of $D$ with domain of definition $pt_D$: \begin{itemize}% \item objects are such generalized elements $\delta : pt_D \to d$ of objects $d \in D$; \item morphisms $\delta \to \gamma$ are given whenever a morphism $f : d \to d'$ in $D$ takes the element $\delta$ to $\delta'$, i.e. whenever there is a commuting triangle \begin{displaymath} \itexarray{ && pt_D \\ & {}^\delta\swarrow && \searrow^{\delta'} \\ d &&\stackrel{f}{\to}&& d' } \,. \end{displaymath} \end{itemize} Notice that the canonical projection $(pt_D/D) \to D$ from the [[over category]] that forgets the tip of these trangles may be regarded as the [[generalized universal bundle]] for the given pointed category $D$: it is the left composite vertical morphism in the pullback \begin{displaymath} \itexarray{ (pt_D/D) &\to& {*} \\ \downarrow && \downarrow \\ D^I &\stackrel{d_0}{\to}& D \\ \downarrow^{d_1} \\ D } \end{displaymath} (see also [[comma category]] for more on this perspective). So in fact such ``categories of generalized elements'' are precisely the [[generalized universal bundles]] in the 1-categorical context. And both are really fundamentally to be thought of as intermediate steps in the computation of [[weak limit|weak pullbacks]], as described now. The above allows to generalize the notion of \emph{category of generalized elements} a bit further to that of generalized elements of functors with values in $D$: let $F : C \to D$ be a functor with codomain our category $D$ with point $pt_D$. The \textbf{category of generalized elements} of $F$ is the [[pullback]] $El_{pt_D}(F) := C \times_D (pt_D/D)$ \begin{displaymath} \itexarray{ El_{pt_D}(F) &\to& (pt_D/D) \\ \downarrow && \downarrow \\ C &\stackrel{F}{\to}& D } \,. \end{displaymath} This means: \begin{itemize}% \item the objects of $El_{pt_D}(F)$ are all the generalized elements $\delta_c : pt_D \to F(c)$ for all $c \in C$; \item a morphism $\delta_c \to \delta_{c'}$ between two such generalized elements is a commuting triangle \begin{displaymath} \itexarray{ && pt_D \\ & {}^{\delta_c}\swarrow && \searrow^{\delta_{c'}} \\ F(c) && \stackrel{F(f)}{\to} && F(c') } \,. \end{displaymath} for all morphisms $f : c \to c'$ in $C$. \end{itemize} \hypertarget{examples}{}\section*{{Examples}}\label{examples} \hypertarget{ordinary_category_of_elements}{}\subsection*{{ordinary category of elements}}\label{ordinary_category_of_elements} For $D =$ [[Set]] and $pt_{Set} = {*}$ the above reproduces the notion of [[category of elements]] of a [[presheaf]]. \hypertarget{action_groupoid}{}\subsection*{{Action Groupoid}}\label{action_groupoid} Given a vector space $V$, a [[group]] $G$ recall that a [[representation]] of $G$ on $V$ \begin{displaymath} V\bullet\righttoleftarrow G \end{displaymath} is canonically identified with a [[functor]] \begin{displaymath} \rho : \mathbf{B} G \to Vect \,. \end{displaymath} \begin{displaymath} \rho : ({*} \stackrel{g}{\to} {*}) \mapsto (V \stackrel{\rho(g)}{\to} V) \,. \end{displaymath} The category [[Vect]] of $k$-vector spaces for some [[field]] $k$ has a standard point $pt_{Vect} \to Vect$, namely the field $k$ itself, regarded as the canonical 1-dimensional $k$-vector space over itself. The corresponding [[over category]] of generalized elements of [[Vect]] $(pt_{Vect}/ Vect)$ has as objects pointed vector spaces and as morphisms linear maps of pointed vector spaces that map the chosen vectors to each other. Now, as described in detail at [[action groupoid]] the category of generalized elements of the representation $\rho$ is the [[action groupoid]] $V//G$ of $G$ acting on $V$ \begin{displaymath} \itexarray{ V//G &\to& Vect_* \\ \downarrow && \downarrow \\ \mathbf{B} G &\to& Vect } \,. \end{displaymath} As described there, $V//G \to \mathbf{B}G$ is the [[groupoid]] incarnation of the vector bundle that is associated via $\rho$ to the universal $G$-bundle on the [[classifying space]] $B G$. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item \href{http://golem.ph.utexas.edu/category/2008/06/an_exercise_in_groupoidificati.html#c017574}{Exploding a Category} \end{itemize} \end{document}