\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{category of presheaves} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{category_theory}{}\paragraph*{{Category Theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{functoriality}{Functoriality}\dotfill \pageref*{functoriality} \linebreak \noindent\hyperlink{characterization}{Characterization}\dotfill \pageref*{characterization} \linebreak \noindent\hyperlink{cartesian_closed_monoidal_structure}{Cartesian closed monoidal structure}\dotfill \pageref*{cartesian_closed_monoidal_structure} \linebreak \noindent\hyperlink{RelWithOvercategories}{Presheaves on over-categories and over-categories of presheaves}\dotfill \pageref*{RelWithOvercategories} \linebreak \noindent\hyperlink{finite_presheaves}{Finite presheaves}\dotfill \pageref*{finite_presheaves} \linebreak \noindent\hyperlink{models_in_presheaf_toposes}{Models in presheaf toposes}\dotfill \pageref*{models_in_presheaf_toposes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $C$ a [[small category]], its \textbf{category of presheaves} is the [[functor category]] \begin{displaymath} PSh(C) := [C^{op}, Set] \end{displaymath} from the [[opposite category]] of $C$ to [[Set]]. An object in this category is a [[presheaf]]. See there for more details. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item The category of presheaves $PSh(C)$ is the [[free cocompletion]] of $C$. \item the [[Yoneda lemma]] says that the [[Yoneda embedding]] $j : C \to PSh(C)$ is -- in particular -- a [[full and faithful functor]]. \item A category of presheaves is a [[topos]]. \item The construction of forming (co)-presheaves extends to a [[2-functor]] \begin{displaymath} [-,Set] : Cat \to Topos \end{displaymath} from the [[2-category]] [[Cat]] to the [[2-category]] [[Topos]]. (See at [[geometric morphism]] the section \href{geometric+morphism#BetweenPresheafToposes}{Between presheaf toposes} for details.) \item A [[reflective subcategory]] of a category of presheaves is a [[locally presentable category]] if it is closed under $\kappa$-[[directed colimit]]s for some [[regular cardinal]] $\kappa$ (the embedding is an [[accessible functor]]). \item A [[geometric embedding|sub-topos]] of a category of presheaves is a [[Grothendieck topos]]: a [[category of sheaves]] (see there for details). \end{itemize} \hypertarget{functoriality}{}\subsubsection*{{Functoriality}}\label{functoriality} See [[functoriality of categories of presheaves]]. \hypertarget{characterization}{}\subsubsection*{{Characterization}}\label{characterization} The following [[Giraud theorem|Giraud like]] theorem stems from [[Marta Bunge|Marta Bunge's]] dissertation (1966) \begin{theorem} \label{bunge_theorem}\hypertarget{bunge_theorem}{} A category $E$ is equivalent to a presheaf topos if and only if it is cocomplete, [[atomic category|atomic]], and [[regular category|regular]]. \end{theorem} A proof as well as a second characterization using [[exact completion|exact completions]] can be found in Carboni-Vitale (\hyperlink{CarboniVitale98}{1998}) or Centazzo-Vitale (\hyperlink{Centazzo-Vitale04}{2004}). The first paper has also an interesting comparison to a classical characterization of categories [[monadic category|monadic]] over Set. \hypertarget{cartesian_closed_monoidal_structure}{}\subsubsection*{{Cartesian closed monoidal structure}}\label{cartesian_closed_monoidal_structure} As every [[topos]], a category of presheaves is a [[cartesian monoidal category|cartesian]] [[closed monoidal category]]. For details on the closed structure see \begin{itemize}% \item [[closed monoidal structure on presheaves]]. \end{itemize} \hypertarget{RelWithOvercategories}{}\subsubsection*{{Presheaves on over-categories and over-categories of presheaves}}\label{RelWithOvercategories} Let $C$ be a [[category]], $c$ an [[object]] of $C$ and let $C/c$ be the [[over category]] of $C$ over $c$. Write $PSh(C/c) = [(C/c)^{op}, Set]$ for the category of [[presheaf|presheaves]] on $C/c$ and write $PSh(C)/Y(c)$ for the [[over category]] of [[presheaf|presheaves]] on $C$ over the presheaf $Y(c)$, where $Y : C \to PSh(C)$ is the [[Yoneda embedding]]. \begin{prop} \label{representable_case}\hypertarget{representable_case}{} There is an [[equivalence]] of categories \begin{displaymath} e : PSh(C/c) \stackrel{\simeq}{\to} PSh(C)/Y(c) \,. \end{displaymath} \end{prop} \begin{proof} The functor $e$ takes $F \in PSh(C/c)$ to the presheaf $F' : d \mapsto \sqcup_{f \in C(d,c)} F(f)$ which is equipped with the natural transformation $\eta : F' \to Y(c)$ with component map $\eta_d \sqcup_{f \in C(d,c)} F(f) \to C(d,c)$. A weak inverse of $e$ is given by the functor \begin{displaymath} \bar e : PSh(C)/Y(c) \to PSh(C/c) \end{displaymath} which sends $\eta : F' \to Y(C))$ to $F \in PSh(C/c)$ given by \begin{displaymath} F : (f : d \to c) \mapsto F'(d)|_c \,, \end{displaymath} where $F'(d)|_c$ is the [[pullback]] \begin{displaymath} \itexarray{ F'(d)|_c &\to& F'(d) \\ \downarrow && \downarrow^{\eta_d} \\ pt &\stackrel{f}{\to}& C(d,c) } \,. \end{displaymath} \end{proof} \begin{uexample} Suppose the presheaf $F \in PSh(C/c)$ does not actually depend on the morphisms to $C$, i.e. suppose that it factors through the forgetful functor from the [[over category]] to $C$: \begin{displaymath} F : (C/c)^{op} \to C^{op} \to Set \,. \end{displaymath} Then $F'(d) = \sqcup_{f \in C(d,c)} F(f) = \sqcup_{f \in C(d,c)} F(d) \simeq C(d,c) \times F(d)$ and hence $F ' = Y(c) \times F$ with respect to the [[closed monoidal structure on presheaves]]. \end{uexample} See also [[functors and comma categories]]. For the analog statement in [[(∞,1)-category]] theory see \begin{itemize}% \item \end{itemize} \begin{uremark} Consider $\int_C Y(c)$ , the [[category of elements]] of $Y(c):C^{op}\to Set$. This has objects $(d_1,p_1)$ with $p_1\in Y(c)(d_1)$, hence $p_1$ is just an arrow $d_1\to c$ in $C$. A map from $(d_1, p_1)$ to $(d_2, p_2)$ is just a map $u:d_1\to d_2$ such that $p_2\circ u =p_1$ but this is just a morphism from $p_1$ to $p_2$ in $C/c$. Hence, the above proposition \ref{representable_case} can be rephrased as $PSh(\int_C Y(c))\simeq PSh(C)/Y(c)$ which is an instance of the following formula: \end{uremark} \begin{prop} \label{}\hypertarget{}{} Let $P:C^{op}\to Set$ be a presheaf. Then there is an [[equivalence of categories]] \begin{displaymath} PSh(\int_C P) \simeq PSh(C)/P \,. \end{displaymath} \end{prop} On objects this takes $F : (\int_C P)^{op} \to Set$ to \begin{displaymath} i(F)(A \in C) = \{ (p,a) | p \in P(A), a \in F(A,p) \} = \Sigma_{p \in P(A)} F(A,p) \end{displaymath} with obvious projection to $P$. The inverse takes $f : Q \to P$ to \begin{displaymath} i^{-1}(f)(A, p \in P(A)) = f_A^{-1}(p)\;. \end{displaymath} For a proof see \hyperlink{KS06}{Kashiwara-Schapira (2006, Lemma 1.4.12, p. 26)}. For a more general statement involving slices of Grothendieck toposes see \hyperlink{MacLaneMoerdijk}{Mac Lane-Moerdijk (1994, p.157)}. In particular, this equivalence shows that \emph{slices of presheaf toposes are presheaf toposes}. \hypertarget{finite_presheaves}{}\subsubsection*{{Finite presheaves}}\label{finite_presheaves} A \emph{finite presheaf} on a category $C$ is a functor $C^{op}\to FinSet$ valued in the [[FinSet|category of finite sets]]. Categories of finite presheaves will hardly be [[Grothendieck toposes]] for want of infinite limits but they still can turn out to be [[elementary toposes]] as e.g. in the case of $FinSet$ itself. By going through the proof that ordinary categories of presheaves are toposes, one observes that the constructions stay within finite presheaves when applied to a finite category $C$ i.e. one with only a finite set of morphisms. Hence, one has the following \begin{prop} \label{}\hypertarget{}{} Let $C$ a finite category. Then the category of finite presheaves $[C^{op},FinSet]$ is a topos. $\qed$ \end{prop} Note, that the category $[G,FinSet]$ of finite $G$-sets is a topos even when the group $G$ is infinite! In this case it is crucial that $\Omega =\{\emptyset , G\}$ in $[G,Set]$ is a finite set. (Cf. \hyperlink{Borceux3}{Borceux (1994, p.299)}) \hypertarget{models_in_presheaf_toposes}{}\subsubsection*{{Models in presheaf toposes}}\label{models_in_presheaf_toposes} See at \emph{[[models in presheaf toposes]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} For [[(∞,1)-category]] theory see [[(∞,1)-category of (∞,1)-presheaves]]. [[!include locally presentable categories - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} A classical (advanced) reference is expos\'e{} 1 of \begin{itemize}% \item [[Michael Artin|M.Artin]], [[Alexander Grothendieck|A.Grothendieck]], [[J. L. Verdier]] (eds.), \emph{Th\'e{}orie des Topos et Cohomologie Etale des Sch\'e{}mas - [[SGA 4]]} , LNM \textbf{269} Springer Heidelberg 1972. \end{itemize} An elementary introduction to presheaf toposes emphasizing finite underlying categories $C$ is \begin{itemize}% \item M. La Palme Reyes, [[Gonzalo E. Reyes|G. E. Reyes]], H. Zolfaghari, \emph{Generic Figures and their Glueings} , Polimetrica Milano 2004. \end{itemize} Standard references are \begin{itemize}% \item [[Francis Borceux]], \emph{Handbook of Categorical Algebra 3 : Categories of Sheaves} , Cambridge UP 1994. \item [[Masaki Kashiwara]], [[Pierre Schapira]], \emph{Categories and Sheaves} , Springer Heidelberg 2006. \item [[Saunders Mac Lane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} , Springer Heidelberg 1994. \end{itemize} The characterizations of categories of presheaves are discussed in \begin{itemize}% \item [[Aurelio Carboni|A. Carboni]], [[Enrico Vitale|E. M. Vitale]], \emph{Regular and exact completions} , JPAA \textbf{125} (1998) pp.79-116. \item C. Centazzo, [[Enrico Vitale|E. M. Vitale]], \emph{Sheaf theory} , pp.311-358 in Pedicchio, Tholen (eds.), \emph{Categorical Foundations} , Cambridge UP 2004. (\href{https://perso.uclouvain.be/enrico.vitale/chapter7.pdf}{draft}) \end{itemize} [[!redirects categories of presheaves]] [[!redirects presheaf category]] [[!redirects presheaf categories]] [[!redirects presheaf-category]] [[!redirects presheaf-categories]] [[!redirects categories of presheaves]] [[!redirects presheaf topos]] [[!redirects presheaf toposes]] [[!redirects presheaf topoi]] \end{document}