\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{category of sheaves} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{equivalent_characterizations}{Equivalent characterizations}\dotfill \pageref*{equivalent_characterizations} \linebreak \noindent\hyperlink{as_localizations}{As localizations}\dotfill \pageref*{as_localizations} \linebreak \noindent\hyperlink{AsToposes}{As toposes}\dotfill \pageref*{AsToposes} \linebreak \noindent\hyperlink{AsAccessibleReflectiveSubcategories}{As accessible reflective subcategories}\dotfill \pageref*{AsAccessibleReflectiveSubcategories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{dependence_on_the_site}{Dependence on the site}\dotfill \pageref*{dependence_on_the_site} \linebreak \noindent\hyperlink{EpiMonoIsomorphisms}{Epi- mono- and isomorphisms}\dotfill \pageref*{EpiMonoIsomorphisms} \linebreak \noindent\hyperlink{exactness_properties}{Exactness properties}\dotfill \pageref*{exactness_properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} This entry is about the properties and the characterization of the category $Sh(S)$ of ([[set]]-valued) [[sheaf|sheaves]] on a ([[small category|small]]) [[site]] $S$, which is a [[Grothendieck topos]]. Among other things it gives a definition and a characterization of the notion of [[sheaf]] itself, but for more details on [[sheaf|sheaves]] themselves see there. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $(C,J)$ be a [[site]]: a (small) [[category]] equipped with a [[coverage]]. \begin{defn} \label{}\hypertarget{}{} The \textbf{category of sheaves} on $(C,J)$ is the [[full subcategory]] of the [[category of presheaves]] \begin{displaymath} i : Sh_J(C) \hookrightarrow PSh(C) \end{displaymath} on those presheaves which are [[sheaves]] with respect to $J$. \end{defn} \begin{prop} \label{SheafInclusionIsReflective}\hypertarget{SheafInclusionIsReflective}{} Every category of sheaves is a [[reflective subcategory]] \begin{displaymath} (L \dashv i) : Sh_J(C) \stackrel{\overset{L}{\leftarrow}}{\hookrightarrow} Psh(C) \,, \end{displaymath} hence a [[subtopos]] of the [[presheaf topos]]. Moreover, every such subtopos arises in this way: there is a [[bijection]] between [[Grothendieck topologies]] on $C$ and equivalence classes of [[geometric embeddings]] into $PSh(C)$. \end{prop} This appears for instance as (\hyperlink{Johnstone}{Johnstone, corollary C.2.1.11}). See also [[Lawvere-Tierney topology]]. \begin{proof} Details on the first statement are at [[sheafification]]. A full proof for the second statement is at [[(∞,1)-category of (∞,1)-sheaves]] (there proven in [[(∞,1)-category theory]], but the proof is verbatim the same in [[category theory]]). \end{proof} \hypertarget{equivalent_characterizations}{}\subsection*{{Equivalent characterizations}}\label{equivalent_characterizations} \hypertarget{as_localizations}{}\subsubsection*{{As localizations}}\label{as_localizations} \begin{prop} \label{}\hypertarget{}{} The category of sheaves is equivalent to the [[homotopy category]] of the [[category with weak equivalences]] $PSh(C)$ with the weak equivalences given by $W =$[[local isomorphisms]] \begin{displaymath} Sh(S) \simeq Ho_{PSh(S)} = PSh(C)[local isomorphisms]^{-1} \,. \end{displaymath} The converse is also true: for every [[left exact functor]] $L : PSh(S) \to PSh(S)$ (preserving finite limits) which is [[adjoint functor|left adjoint]] to the inclusion of its image, there is a Grothendieck topology on $S$ such that the image of $L$ is the category of sheaves on $S$ with respect to that topology. \end{prop} We spell out proofs of some of the above claims. Let $C$ be a [[small category]] and \begin{displaymath} i : \mathcal{E} \hookrightarrow [C^{op}, Set] \end{displaymath} a [[reflective subcategory]], hence a [[full subcategory]] with a [[left adjoint]] $L : [C^{op}, Set] \to \mathcal{E}$, such that moreover $L$ preserves [[finite limit]]s. Write $W := L^{-1}(isos) \subset Mor([C^{op}, Set])$ for the [[class]] of [[morphism]]s in $[C^{op}, Set]$ that are sent to [[isomorphism]]s by $L$. \begin{prop} \label{CharacterizationOfLocalObjects}\hypertarget{CharacterizationOfLocalObjects}{} A [[presheaf]] $A \in [C^{op}, Set]$ is in $\mathcal{E}$ (meaning: in the [[essential image]] of $i$) precisely if for all $f : X \to Y$ in $W$ the induced function \begin{displaymath} Hom(f,A) : Hom(Y,A) \to Hom(X,A) \end{displaymath} is a [[bijection]]. \end{prop} \begin{proof} If $A \simeq i \hat A$, then by the $(L \dashv i)$-[[adjunction]] [[isomorphism]] we have \begin{displaymath} Hom(f, i \hat A) \simeq \mathcal{E}(L(f), A) \,. \end{displaymath} But by assumption $L(f)$ is an [[isomorphism]], so the claim is immediate. Conversely, if for all $f$ the function $Hom(f,A)$ is a bijection, define $\hat A := L(A)$ and let $\epsilon_A : A \to i L(A)$ be the $(L \dashv i)$-[[unit of an adjunction|unit]]. By the assumption that $i$ is a [[full and faithful functor]] and basic properties of [[adjoint functor]]s we habe that the counit \begin{displaymath} L i \to Id \end{displaymath} is a [[natural isomorphism]]. By the [[zig-zag law]] the composite \begin{displaymath} L A \stackrel{L \epsilon_A}{\to} L i L A \stackrel{\simeq}{\to} L A \end{displaymath} is the [[identity]] and therefore $L \epsilon$ is an [[isomorphism]] and so $\epsilon_A$ is in $W$, under our assumption on $A$. Using this it follows that \begin{displaymath} Hom(\epsilon_A, A) : Hom(i L A, A) \stackrel{\simeq}{\to} Hom(A,A) \end{displaymath} is an [[isomorphism]]. Write $k_A : i L A \to A$ for the preimage of $id_A$ under this isomorphism, which is therefore a [[left inverse]] of $\epsilon_A$. This immediately implies that also $k_A$ is in $W$, and so we can enter the same argument with $k_A$ to find that it has a left inverse itself. But this means that $k_A$ is in fact an [[isomorphism]] and hence so is $\epsilon A$, which thus exhibits $A$ as being in the essential image of $i$. \end{proof} \begin{prop} \label{WeakEquivalencesDetectedOnRepresentableCodomains}\hypertarget{WeakEquivalencesDetectedOnRepresentableCodomains}{} A [[morphism]] $f : X \to Y$ is in $W$ precisely if for every morphism $z : j(c) \to Y$ with [[representable functor|representable]] [[domain]], the [[pullback]] $z^* f$ in \begin{displaymath} \itexarray{ X \times_Y j(c) &\to& X \\ {}^{\mathllap{z^* f}}\downarrow && \downarrow^{\mathrlap{f}} \\ j(c) &\stackrel{z}{\to}& Y } \end{displaymath} is in $W$. \end{prop} \begin{proof} Assume first that $f$ is in $W$. Since by assumption $L$ preserves finite limits, it follows that \begin{displaymath} \itexarray{ L(X \times_Y j(c)) &\to& L X \\ {}^{\mathllap{L(z^* f)}}\downarrow && \downarrow^{\mathrlap{L f}} \\ L(j(c)) &\stackrel{L z}{\to}& L Y } \end{displaymath} is still a [[pullback]] diagram in $\mathcal{E}$ and hence that $L(z^* f)$ is the pullback of the [[isomorphism]] $L f$ and thus itself an isomorphism. Therefore $z^* f$ is in $W$. Conversely, suppose that all these pullbacks are in $W$. Then use the ``[[co-Yoneda lemma]]'' to write the presheaf $Y$ as a [[colimit]] over all representables mapping into it \begin{displaymath} {\lim_\to}_{j(c_i) \stackrel{z_i}{\to} Y} j(c) \stackrel{\simeq}{\to} Y \,. \end{displaymath} Forming the [[pullback]] along $f$, using that in a [[topos]] (such as our [[presheaf topos]]) colimits are preserved by pullbacks, we get \begin{displaymath} \itexarray{ {\lim_\to}_i f^* j(c_i) &\stackrel{\simeq}{\to}& X \\ {}^{\mathllap{{\lim_\to}_i z_i^* f}}\downarrow && \downarrow^{\mathrlap{f}} \\ {\lim_\to}_i j(c_i) &\stackrel{\simeq}{\to}& Y } \,. \end{displaymath} Since $L$ preserves all colimits and finite limits, we also get \begin{displaymath} \itexarray{ {\lim_\to}_i L(f^* j(c_i)) &\stackrel{\simeq}{\to}& L(X) \\ {}^{\mathllap{{\lim_\to}_i L(z_i^* f)}}\downarrow && \downarrow^{\mathrlap{L(f)}} \\ {\lim_\to}_i L(j(c_i)) &\stackrel{\simeq}{\to}& L(Y) } \,. \end{displaymath} Since by assumption now all $L(z_i^* f )$ are isomorphisms, also ${\lim_\to}_i L(z_i^* f)$ is an isomorphism and hence three sides of the above square are isomorphisms. Therefore also $L(f)$ is and hence $f$ is in $W$. \end{proof} \begin{prop} \label{LocalizationInducesGrothendieckTopology}\hypertarget{LocalizationInducesGrothendieckTopology}{} The collection of [[sieve]]s in $W$, hence the collection of [[monomorphism]]s in $W$ whose [[codomain]] is a [[representable functor|representable]], constitute a [[Grothendieck topology]] on $C$. \end{prop} \begin{proof} We check the list of axioms, given at [[Grothendieck topology]]: \begin{enumerate}% \item \emph{Pullbacks of covering sieves are covering} : First of all, the pullback of a sieve along a morphism of representables is still a sieve, because [[monomorphism]]s are (as discussed there) stable under pullback. Next, since $L$ preserves [[finite limit]]s, $L$ applied to the pullback sieve is the pullback of an isomorphism, hence is an isomorphism, hence the pullback sieve is in $W$. \item \emph{The maximal sieve is covering.} Clear: $L$ applied to an [[isomorphism]] is an [[isomorphism]]. \item \emph{Two sieves cover precisely if their intersection covers.} This is again due to the [[pullback]]-stability of elements of $W$, due to the preservation of finite limits by $L$. \item \emph{If all pullbacks of a sieve along morphisms of a covering sieve are covering, then the original sieve was covering} . This is the same argument as in the second part of the proof of prop. \ref{WeakEquivalencesDetectedOnRepresentableCodomains}. \end{enumerate} \end{proof} \begin{prop} \label{}\hypertarget{}{} $\mathcal{E}$ is a [[Grothendieck topos]]. \end{prop} \begin{proof} By prop. \ref{LocalizationInducesGrothendieckTopology} and prop. \ref{CharacterizationOfLocalObjects} we are reduced to showing that an object $A$ is in $\mathcal{E}$ already if for all \emph{[[monomorphisms]]} $f$ in $W$ the function $Hom(f,A)$ is a bijection. (\ldots{}) \end{proof} \hypertarget{AsToposes}{}\subsubsection*{{As toposes}}\label{AsToposes} Categories of sheaves are examples of [[categories]] that are [[topos]]es: they are the [[Grothendieck topos]]es characterized among all toposes as those satisfying [[Grothendieck topos|Giraud's axioms]]. \begin{prop} \label{}\hypertarget{}{} [[Grothendieck topos|Sheaf toposes]] are equivalently the [[geometric embedding|subtoposes]] of [[presheaf toposes]]. \end{prop} This appears for instance as (\hyperlink{Johnstone}{Johnstone, corollary C.2.1.11}). \hypertarget{AsAccessibleReflectiveSubcategories}{}\subsubsection*{{As accessible reflective subcategories}}\label{AsAccessibleReflectiveSubcategories} \begin{prop} \label{}\hypertarget{}{} [[sheaf toposes are equivalently the left exact reflective subcategories of presheaf toposes]] \end{prop} See also at \emph{[[reflective sub-(∞,1)-category]]}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{dependence_on_the_site}{}\subsubsection*{{Dependence on the site}}\label{dependence_on_the_site} \begin{prop} \label{}\hypertarget{}{} For $(L \dashv i) : \mathcal{E} \stackrel{\overset{L}{\leftarrow}}{\hookrightarrow}$ a category of sheaves and $(C,J)$ a [[site]] such that we have an equivalence of categories $\mathcal{E} \simeq Sh_J(C)$ we say that $C$ is a \textbf{site of definition} for the [[topos]] $\mathcal{E}$. \end{prop} \begin{remark} \label{}\hypertarget{}{} There are always different [[site]]s $(C,J)$ whose categories of sheaves are [[equivalence of categories|equivalent]]. First of all for fixed $C$ and given a [[coverage]] $J$, the category of sheaves depends only on the [[Grothendieck topology]] generated by $J$. But there may be site structures also on inequivalent categories $C$ that have equivalent categories of sheaves. \end{remark} \begin{defn} \label{InducedCoverage}\hypertarget{InducedCoverage}{} For $(C,J)$ a [[site]] with [[coverage]] $J$ and $D \to C$ any [[subcategory]], the \textbf{induced coverage} $J_D$ on $D$ has as [[covering]] [[sieve]]s the intersections of the covering sieves of $C$ with the morphisms in $D$. \end{defn} \begin{defn} \label{DenseSubSite}\hypertarget{DenseSubSite}{} Let $(C,J)$ be a [[site]] (possibly [[large site|large]]). A [[subcategory]] $D \to C$ (not necessarily full) is called a \textbf{[[dense sub-site]]} with the \hyperlink{InducedCoverage}{induced coverage} $J_D$ if \begin{enumerate}% \item every object $U \in C$ has a [[covering]] $\{U_i \to U\}$ in $J$ with all $U_i$ in $D$; \item for every morphism $f : U \to d$ in $C$ with $d \in D$ there is a [[covering]] family $\{f_i : U_i \to U\}$ such that the composites $f \circ f_i$ are in $D$. \end{enumerate} \end{defn} \begin{remark} \label{}\hypertarget{}{} If $D$ is a [[full subcategory]] then the second condition is automatic. \end{remark} \begin{theorem} \label{}\hypertarget{}{} \textbf{(comparison lemma)} Let $(C,J)$ be a (possibly [[large site|large]]) [[site]] with $C$ a [[locally small category]] and let $f : D \to C$ be a [[small category|small]] \hyperlink{DenseSubSite}{dense sub-site}. The pair of [[adjoint functor]]s \begin{displaymath} (f^* \dashv f_*) : PSh(D) \stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}} PSh(C) \end{displaymath} with $f^*$ given by precomposition with $f$ and $f_*$ given by right [[Kan extension]] induces an [[equivalence of categories]] between the categories of sheaves \begin{displaymath} (f_* \dashv f^*) : Sh_{J_D}(D) \underoverset {\underset{f_*}{\to}}{\overset{f^*} {\leftarrow}} {\simeq} Sh_J{C} \,. \end{displaymath} \end{theorem} This appears as (\hyperlink{Johnstone}{Johnstone, theorm C2.2.3}). \begin{example} \label{}\hypertarget{}{} \begin{itemize}% \item Let $X$ be a [[locale]] with [[frame]] $Op(X)$ regarded as a site with the canonical coverage ($\{U_i \to U\}$ covers if the [[join]] of the $U_i$ is $U$). Let $bOp(X)$ be a [[basis for the topology]] of $X$: a complete join-[[semilattice]] such that every object of $Op(X)$ is the [[join]] of objects of $bOp(X)$. Then $bOp(X)$ is a dense sub-site. \begin{itemize}% \item For $X$ a [[locally contractible space]], $Op(X)$ its [[category of open subsets]] and $cOp(X)$ the full subcategory of [[contractible]] open subsets, we have that $cOp(X)$ is a dense sub-site. \end{itemize} \item For $C = TopManifold$ the category of all [[paracompact topological space|paracompact]] [[topological manifold]]s equipped with the [[open cover]] coverage, the category [[CartSp]]${}_{top}$ is a dense sub-site: every paracompact manifold has a [[good open cover]] by [[open balls]] [[homeomorphic]] to a [[Cartesian space]]. \item Similaryl for $C =$ [[Diff]] the category of [[smooth manifold]]s equipped with the [[good open cover]] [[coverage]], the full subcategory [[CartSp]]${}_{smooth}$ is a dense sub-site. \end{itemize} \end{example} \hypertarget{EpiMonoIsomorphisms}{}\subsubsection*{{Epi- mono- and isomorphisms}}\label{EpiMonoIsomorphisms} \begin{prop} \label{RecognitionOfEpimorphisms}\hypertarget{RecognitionOfEpimorphisms}{} Let $\mathcal{C}$ be a [[small site]] and let $Sh(\mathcal{C})$ be its category of sheaves. Let $f \colon X \to Y$ be a homomorphism of sheaves, hence a morphism in $Sh(\mathcal{C})$. Then: \begin{enumerate}% \item $f$ is a [[monomorphism]] or [[isomorphism]] precisely if it is so \emph{globally} in that for each object $U \in \mathcal{C}$ in the site, then the component $f_U \colon X(U) \to Y(U)$ is an [[injection]] or [[bijection]] of [[sets]], respectively. \item $f$ is an [[epimorphism]] precisely if it is so \emph{locally}, in that: for all $U \in C$ there is a [[covering]] $\{p_i : U_i \to U\}_{i \in I}$ such that for all $i \in I$ and every element $y \in Y(U)$ the element $f(p_i)(y)$ is in the image of $f(U_i) : X(U_i) \to Y(U_i)$. \end{enumerate} But if $\{x_i\}_{i \in I}$ is a [[set]] of [[points of a topos]] for $Sh(\mathcal{C})$ such that these are \emph{enough points} (\href{point+of+a+topos#EnoughPoints}{def.}) then the morphism $f$ is epi/mono/iso precisely it is is so an all [[stalks]], hence precisely if \begin{displaymath} x_i^\ast f \;\colon\; x_i^\ast X \longrightarrow x_i^\ast Y \end{displaymath} is a surjection/injection/bijection of sets, respectively, for all $i \in I$. \end{prop} \hypertarget{exactness_properties}{}\subsubsection*{{Exactness properties}}\label{exactness_properties} Every sheaf topos satisfies the following [[exactness properties]]. it is an \begin{itemize}% \item [[extensive category]]; \item [[adhesive category]]; \item [[exhaustive category]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[coverage]] [[trivial coverage]] \item \textbf{category of sheaves} \item [[category of sheaves on a topological space]] \item [[(∞,1)-category of (∞,1)-sheaves]]. \end{itemize} [[!include locally presentable categories - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Francis Borceux]], vol 3 of \emph{[[Handbook of Categorical Algebra]]}, Cambridge University Press (1994) \item [[Peter Johnstone]], sections A.4 and C.2 in \emph{[[Elephant|Sketches of an Elephant]]} \item [[The Stacks Project]], \emph{Sites and sheaves} (\href{http://stacks.math.columbia.edu/download/sites.pdf}{pdf}) \end{itemize} The characterization of sheaf toposes and Grothendieck topologies in terms of left exact [[reflective subcategory|reflective subcategories]] of a presheaf category is also in \begin{itemize}% \item [[Saunders MacLane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} \end{itemize} where it is implied by the combination of Corollary VII 4.7 and theorem V.4.1. The characterization of $Sh(S)$ as the [[homotopy category]] of $PSh(S)$ with respect to local isomorphisms is emphasized at the beginning of the text \begin{itemize}% \item [[Bertrand Toen]], \emph{Stacks and non-abelian cohomology} (\href{http://www.msri.org/publications/ln/msri/2002/introstacks/toen/1/index.html}{web}) . \end{itemize} Details are in \begin{itemize}% \item Kashiwara-Schapira, \emph{[[Categories and Sheaves]]} . \end{itemize} It's a bit odd that the full final statement does not seem to be stated there explicitly, but all the ingredients are discussed: \begin{itemize}% \item exercise 16.7 shows that [[sheafification]] inverts precisely the [[local isomorphism]]s, so that in particular every [[local isomorphism]] between [[sheaf|sheaves]] is an [[isomorphism]]; \item lemma 16.3.2 states that the unit of the [[adjoint functor|adjunction]] $Id_{PSh(S)} \rightarrow i \circ \bar{(-)} : PSh(S) \to PSh(S)$ is componentwise a [[local isomorphism]]; \item using this corollary 7.2.2 says that $Sh(S) \simeq Ho_{PSh(S)}$ with the [[homotopy category]] $Ho_{PSh(S)}$ formed using [[local isomorphism]]s as weak equivalences. \end{itemize} [[!redirects sheaf category]] [[!redirects categories of sheaves]] [[!redirects topos of sheaves]] [[!redirects topoi of sheaves]] [[!redirects toposes of sheaves]] \end{document}