\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{category of simplices} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{categories_of_simplices}{}\section*{{Categories of simplices}}\label{categories_of_simplices} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{colimits}{Colimits}\dotfill \pageref*{colimits} \linebreak \noindent\hyperlink{the_nerve_and_subdivision}{The nerve and subdivision}\dotfill \pageref*{the_nerve_and_subdivision} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $X$ a [[simplicial set]] its \emph{category of simplices} is the [[category]] whose [[objects]] are the [[simplices]] \emph{in} $X$ and whose [[morphisms]] are maps between these, as simplices in $X$. In particular the [[subcategory]] on the non-degenerate simplices has a useful interpretation: it is the [[poset]] of subsimplex inclusions whose [[nerve]] is the [[barycentric subdivision]] of $X$, at least if every non-degenerate simplex in $X$ comes from a monomorphism $\Delta^n \to X$, as for a [[simplicial complex]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $X \in$ [[sSet]] be a [[simplicial set]]. \begin{defn} \label{}\hypertarget{}{} The \textbf{category of simplices} of $X$ is equivalently (in increasing order of explicitness) \begin{itemize}% \item the [[category of elements]] of the [[presheaf]] $X_\bullet : \Delta^{op} \to Set$; \item the [[comma category]] $(\Delta\downarrow X)$, where $\Delta$ denotes the [[Yoneda embedding]] $[n] \mapsto \Delta^n$. \item the [[category]] whose [[objects]] are [[homomorphisms]] of simplicial sets $c : \Delta^n \to X$ from a standard simplicial [[simplex]] $\Delta^n$ to $X$, and whose morphisms $c \to c'$ are morphisms $f : \Delta^n \to \Delta^{n'}$ in the [[simplex category]] $\Delta$ such that the [[diagram]] \begin{displaymath} \itexarray{ \Delta^n &&\stackrel{f}{\to}&& \Delta^{n'} \\ & {}_{c}\searrow && \swarrow_{c'} \\ && X } \end{displaymath} [[commuting diagram|commutes]]. \end{itemize} \end{defn} \begin{defn} \label{BarycentricSubdivision}\hypertarget{BarycentricSubdivision}{} An $n$-[[simplex]] $x\in X_n$ is said to be \emph{non-degenerate} if it is not in the image of any degeneracy map. Write \begin{displaymath} (\Delta\downarrow X)_{nondeg}\hookrightarrow (\Delta\downarrow X) \end{displaymath} for the (non-full) subcategory on the non-degenerate simplices. Notice that a morphism of $\Delta\downarrow X$ with source a non-degenerate simplex of $X$ is necessary a [[monomorphism]]. This is called the \textbf{category of non-degenerate simplices}. \end{defn} \begin{remark} \label{}\hypertarget{}{} If every non-degenerate simplex in $X$ comes from a [[monomorphism]] $\Delta^n \to X$, then the [[nerve]] $N((\Delta \downarrow X)_{nondeg})$ is also called the \textbf{[[barycentric subdivision]]} of $X$. \end{remark} See at \emph{\href{subdivision#RelationToCategoryOfSimplices}{barycentric subdivision -- Relation to the category of simplices}}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{prop} \label{}\hypertarget{}{} If $X$ has the property that every face of every non-degenerate simplex is again non-degenerate, then the inclusion of the category of non-degenerate simplices $(\Delta \downarrow X)_{nondeg} \hookrightarrow (\Delta \downarrow X)$ has a [[left adjoint]] and is hence a [[reflective subcategory]]. \end{prop} \begin{prop} \label{}\hypertarget{}{} The category of simplices is a [[Reedy category]]. \end{prop} \hypertarget{colimits}{}\subsubsection*{{Colimits}}\label{colimits} Write $(\Delta \downarrow X) \to sSet$ for the canonical functor that sends $(\Delta^n \to X)$ to $\Delta^n$. \begin{prop} \label{ColimitOverSimplicesOfXIsX}\hypertarget{ColimitOverSimplicesOfXIsX}{} The [[colimit]] over the [[functor]] $(\Delta \downarrow X) \to sSet$ is $X$ itself \begin{displaymath} X \simeq \underset{\to}{\lim}((\Delta \downarrow X) \to sSet) \end{displaymath} \end{prop} \begin{proof} By the [[co-Yoneda lemma]]. \end{proof} In the textbook literature this appears for instance as (\hyperlink{Hovey}{Hovey, lemma 3.1.3}). \begin{cor} \label{}\hypertarget{}{} A colimit-preserving [[functor]] $F\colon sSet \to C$ is uniquely determined by its action on the standard simplices: \begin{displaymath} F(X) \cong colim_{(\Delta\downarrow X)} F(\Delta^\bullet). \end{displaymath} \end{cor} \begin{example} \label{}\hypertarget{}{} Important colimit-preserving functors out of [[sSet]] include \begin{itemize}% \item [[geometric realization]] of simplicial sets \item [[subdivision]] of simplicial sets \item the [[left adjoint]] to the [[nerve]] functor $N:Cat \to SSet$ \item the category of simplices itself, as a functor $SSet \to Cat$; see \href{category+of+elements#ColimitPreserving}{category of elements -- colimit preserving}. \end{itemize} \end{example} \hypertarget{the_nerve_and_subdivision}{}\subsubsection*{{The nerve and subdivision}}\label{the_nerve_and_subdivision} Let $N\colon$ [[Cat]] $\to$ [[sSet]] denote the simplicial [[nerve]] functor on [[categories]]. \begin{theorem} \label{}\hypertarget{}{} The functor $sSet \to sSet$ that assigns [[barycentric subdivision]], def. \ref{BarycentricSubdivision}, \begin{displaymath} X\mapsto N(\Delta\downarrow X) \end{displaymath} preserves [[colimits]]. \end{theorem} \begin{proof} An $n$-[[simplex]] of $N(\Delta\downarrow X)$ is determined by a string of $n+1$ composable morphisms \begin{displaymath} \Delta^{k_n} \to \dots\to \Delta^{k_0} \end{displaymath} along with a map $\Delta^{k_0} \to X$, i.e. an element of $X_{k_0}$ Thus, each the functor $X\mapsto N(\Delta\downarrow X)_n$ from $SSet \to Set$ is a coproduct of a family of ``evaluation'' functors. Since evaluation preserve colimits, coproducts commute with colimits, and colimits in $SSet$ are levelwise, the statement follows. \end{proof} Therefore, the simplicial set $N(\Delta\downarrow X)$ itself can be computed as a colimit over the category $(\Delta\downarrow X)$ of the simplicial sets $N(\Delta\downarrow \Delta^n)$. \hypertarget{references}{}\subsection*{{References}}\label{references} A basic disussion is for instance in section 3.1 of \begin{itemize}% \item [[Mark Hovey]], \emph{Model categories}, Mathematical surveys and monographs volume 63, American Mathematical Society \end{itemize} Homotopy finality of the non-degenerate simplices is discussed in section 4.1 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} For more on [[barycentric subdivision]] see also section 2 of \begin{itemize}% \item [[Rick Jardine]], \emph{Simplicial approximation}, Theory and Applications of Categories, Vol. 12, 2004, No. 2, pp 34-72. (\href{ftp://ftp.math.ethz.ch/EMIS/journals/TAC/volumes/12/2/12-02aabs.html}{web}) \end{itemize} [[!redirects category of simplices]] [[!redirects category of simplicies]] [[!redirects categories of simplices]] [[!redirects category of nondegenerate simplices]] [[!redirects categories of nondegenerate simplices]] [[!redirects category of non-degenerate simplices]] [[!redirects categories of non-degenerate simplices]] \end{document}