\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{causal perturbation theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{MainTheoremOfRenormalization}{Main theorem of renormalization}\dotfill \pageref*{MainTheoremOfRenormalization} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{on_minkowski_spacetime}{On Minkowski spacetime}\dotfill \pageref*{on_minkowski_spacetime} \linebreak \noindent\hyperlink{ReferencesOnCurvedSpacetimes}{On curved spacetimes}\dotfill \pageref*{ReferencesOnCurvedSpacetimes} \linebreak \noindent\hyperlink{local_covariance}{Local covariance}\dotfill \pageref*{local_covariance} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What is called \emph{causal perturbation theory} is a mathematically rigorous construction of \emph{[[perturbative quantum field theory|perturbative]]} ([[gauge theory|gauge]]-) [[quantum field theory]], such as [[quantum electrodynamics]], based on a mathematical formulation of [[renormalization]] by St\"u{}ckelberg-Bogoliubov-Epstein-Glaser (\hyperlink{EpsteinGlaser73}{Epstein-Glaser 73}). Causal perturbation theory may be regarded as providing a well-defined consistent generalization from [[quantum mechanics]] to [[quantum field theory]] on [[Lorentzian manifold|Lorentzian]] [[spacetimes]] of the construction of the [[S-matrix]] via the [[Dyson formula]] (``[[time-ordered products]]'') in the [[interaction picture]] . A key idea of causal perturbation theory is that the [[interaction]] term $V$ is considered multiplied with some [[smooth function]] $g$ which has [[compact support]] on [[spacetime]]. This hence serves as a spacetime-dependent ``[[coupling constant]]'' which ``switches off'' the interaction outside a compact region, but not discontinuously as in many other schemes, but smoothly, hence ``adiabatically'' in terminology borrowed from [[thermodynamics]]. Therefore this is often called the ``[[adiabatic switching]]'' function, or similar. The corresponding [[S-matrix]] would naively be given by the [[Dyson formula]] \begin{displaymath} S_g \coloneqq T \exp\left( \int_X g(x) V(x) dvol(x) \right) \end{displaymath} for $V$ the [[interaction]] term, and ``$T$'' indicating the [[time-ordered product]]. Causal perturbation theory proceeds by [[axiom|axiomatizing]] the key structural properties of this ``[[adiabatic switching|adiabatically switched]]'' [[S-matrix]], in particular its \emph{[[causal additivity]]}, making sense of the ``[[time-ordered product]]'' by appropriate [[causal locality|causal ordering]] (whence the name of the approach) and then proving by [[induction]] that solutions to these axioms exist. It turns out that at each step in the [[induction]] (corresponding to each loop order) a [[distribution]] has to be \href{extension%20of%20distributions#SolutionSpaceOfPointExtensions}{extended to a point}, namely to the point at which the [[interaction]] takes place. A key theorem (\hyperlink{EpsteinGlaser73}{Epstein-Glaser 73, section 5}, \href{extension+of+distributions#SpaceOfPointExtensions}{this prop.}) states that this extension is parameterized by a finite-dimensional space of [[point-supported distributions]] at that point. One may organize the distributions that need to be extended into [[Feynman diagrams]] (\hyperlink{DuetschFredenhagenKellerRejzner14}{D\"u{}tsch-Fredenhagen-Keller-Rejzner 14}). This way the freedom in [[extension of distributions]] is identified with the traditional [[renormalization]] freedom in [[perturbative quantum field theory]], see at \emph{[[main theorem of perturbative renormalization]]} for more on this point. (It may be argued, vividly so in \hyperlink{Scharf95}{Scharf 95, p. 181-182}, that the notorious ``infinities'' that ``plague'' quantum field theory in other approaches are nothing but the result of incorrectly dealing with the issue of [[extension of distributions]].) In fact the [[interacting field algebra]] induced by the [[S-matrix]] constructed via causal perturbation theory this way is a model for [[Fedosov's formal deformation quantization]] of the given [[local Lagrangian density]] (\hyperlink{Collini16}{Collini 16}, \hyperlink{HawkinsRejzner16}{Hawkins-Rejzner 16}), thus justifying the method from first principles of (perturbative) [[quantization]]. The key axiom imposed on the [[S-matrix]] in causal perturbation theory is [[causal locality]], whence the name of the approach. This axiom asks that if adiabatic switching functions $g$ and $h$ have [[spacelike]] separated [[supports]] then the S-matrix \emph{factors} \begin{displaymath} S_{g + h} = S_g S_h \,. \end{displaymath} The [[time-ordered products]] $T(..)$ of [[field (physics)|fields]] are handled by splitting of [[distributions]] using tools from [[microlocal analysis]]. This is the mathematically rigorous step that takes care of what in other approaches are the ``[[ultraviolet divergences]]''. Originally the idea was that in the end the [[limit of a sequence|limit]] $g \to 1$ had to be taken, removing the adiabatic switching of the the compact support of the interaction. In general this limit does not exist (``[[infrared divergences]]'', e.g. \hyperlink{AAS10}{AAS 10, section 6}). But in (\hyperlink{IlinSlavnov78}{Il'in-Slavnov 78}) it was observed that in fact the [[algebra of observables]] on any [[bounded subsets|bounded]] region may be computed with a $g$ whose [[compact support]] contains the [[causal closure]] of that region. Later in (\hyperlink{BrunettiFredenhagen00}{Brunetti-Fredenhagen 00}) it was pointed out that this means that causal perturbation theory in fact serves to construct the [[causally local net of observables]] of the [[perturbative quantum field theory]] (see \href{S-matrix#PerturbativeQuantumObservablesIsLocalnet}{this prop} for details), as in the [[axioms]] for [[AQFT]] and in fact as in the axioms of [[AQFT on curved spacetimes]], but with values in [[formal power series algebras]] (as befits a [[perturbation theory]]) instead of [[C\emph{-algebras]] (suitable for [[non-perturbative quantum field theory]]).} (This takes care of the ``[[algebraic adiabatic limit]]'', which defines the [[quantum observables]]. It does not yet in itself define the ``[[weak adiabatic limit]]'' for the would-be [[vacuum]] [[quantum state]].) This way causal perturbation theory leads to a unification of [[AQFT]] [[AQFT on curved spacetimes]] with [[perturbative quantum field theory]]. This unification is now known as \textbf{[[locally covariant perturbative quantum field theory]]}, see there for more. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{MainTheoremOfRenormalization}{}\subsubsection*{{Main theorem of renormalization}}\label{MainTheoremOfRenormalization} A central result in causal perturbation theory is called the \emph{[[main theorem of perturbative renormalization theory]]}. This says that any two \emph{renormalization schemes}, hence any two solutions to the inductive construction of the [[S-matrix]] $V \mapsto S(V)$, as indicated above, for [[interaction]] terms $V$, are related by a unique natural transformation $Z \colon V \to V'$ \begin{displaymath} S' = S \circ Z \,. \end{displaymath} The collection of these operations $Z$ forms a [[group]] called the \emph{[[Stückelberg-Petermann renormalization group]]}. This is a mathematical reflection of the idea that renormalization is about regarding a [[perturbative quantum field theory]] with [[interaction]] $V$ as a [[effective field theory]] at some energy scale and then discovering that at higher energy there is a more fundamental interaction $Z(V)$ which effectively looks like $V$ at lower energy. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[locally covariant perturbative quantum field theory]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} Lecture notes in \begin{itemize}% \item [[Urs Schreiber]], \emph{[[geometry of physics -- perturbative quantum field theory]]} \end{itemize} The method is due to \begin{itemize}% \item [[Henri Epstein]], [[Vladimir Glaser]], \emph{[[The Role of locality in perturbation theory]]}, Annales Poincar\'e{} Phys. Theor. A 19 (1973) 211 (\href{http://www.numdam.org/item?id=AIHPA_1973__19_3_211_0}{Numdam}) \end{itemize} with precursors in \begin{itemize}% \item [[Ernst Stückelberg]], D. Rivier, Helv. Phys. Acta, 22 (1949) 215. \item [[Ernst Stückelberg]], J. Green, Helv. Phys. Acta, 24 (1951) 153. \item [[Ernst Stückelberg]], A. Peterman, , \emph{La normalisation des constants dans la theorie des quanta}, Helv. Phys. Acta 26, 499 (1953); \item [[Nikolay Bogoliubov]], [[Dmitry Shirkov]], \emph{Introduction to the Theory of Quantized Fields}, New York (1959) \end{itemize} whence sometimes called the \emph{St\"u{}ckelberg-Bogoliubov-Epstein-Glaser method}. The expression of causal perturbation theory in terms of [[Feynman diagram]] techniques is due to \begin{itemize}% \item [[Michael Dütsch]], [[Klaus Fredenhagen]], Kai Keller, [[Katarzyna Rejzner]], \emph{Dimensional Regularization in Position Space, and a Forest Formula for Epstein-Glaser Renormalization}, J. Math. Phy. 55(12), 122303 (2014) (\href{https://arxiv.org/abs/1311.5424}{arXiv:1311.5424}) \end{itemize} That causal perturbation theory (in the generality of curved spacetimes, see \hyperlink{ReferencesOnCurvedSpacetimes}{below}) is equivalently the ([[Fedosov deformation quantization|Fedosov]]-)[[formal deformation quantization]] of the interacting Lagrangian density was shown for the [[scalar field]] [[phi{\tt \symbol{94}}4 theory]] in \begin{itemize}% \item [[Giovanni Collini]], \emph{Fedosov Quantization and Perturbative Quantum Field Theory} (\href{https://arxiv.org/abs/1603.09626}{arXiv:1603.09626}) \end{itemize} and for the interacting scalar field in the toy example of regular non-local interactions in \begin{itemize}% \item [[Eli Hawkins]], [[Kasia Rejzner]], \emph{The Star Product in Interacting Quantum Field Theory} (\href{https://arxiv.org/abs/1612.09157}{arXiv:1612.09157}) \end{itemize} \hypertarget{on_minkowski_spacetime}{}\subsubsection*{{On Minkowski spacetime}}\label{on_minkowski_spacetime} Causal perturbation theory has been worked out in detail for the example of [[quantum electrodynamics]] on [[Minkowski spacetime]] in \begin{itemize}% \item [[Günter Scharf]], \emph{[[Finite Quantum Electrodynamics -- The Causal Approach]]}, Berlin: Springer-Verlag, 1995, 2nd edition \end{itemize} and for [[quantum chromodynamics]] and [[perturbative quantum gravity]] on [[Minkowski spacetime]] in \begin{itemize}% \item [[Günter Scharf]], \emph{[[Quantum Gauge Theories -- A True Ghost Story]]}, Wiley 2001 \end{itemize} Non-technical exposition of this includes \begin{itemize}% \item [[Arnold Neumaier]], \emph{\href{https://www.physicsforums.com/insights/causal-perturbation-theory/}{Causal Perturbation Theory}} (2015) \item [[Arnold Neumaier]], \emph{\href{https://www.mat.univie.ac.at/~neum/physfaq/topics/causalQFT.html}{Action-based quantum field theory and causal perturbation theory}} (one section in \emph{\href{http://www.mat.univie.ac.at/~neum/physfaq/physics-faq.html}{A theoretical physics FAQ}}) \end{itemize} Technical review includes \begin{itemize}% \item Andreas Aste, Cyrill von Arx, [[Günter Scharf]], \emph{Regularization in quantum field theory from the causal point of view}, Prog. Part. Nucl. Phys.64:61-119, 2010 (\href{https://arxiv.org/abs/0906.1952}{arXiv:0906.1952}) \item Christian P\"o{}selt, \emph{The method of Epstein and Glaser I}, 2002 (\href{http://wwwthep.physik.uni-mainz.de/~scheck/Poeselt.pdf}{pdf}) \end{itemize} \hypertarget{ReferencesOnCurvedSpacetimes}{}\subsubsection*{{On curved spacetimes}}\label{ReferencesOnCurvedSpacetimes} The generalization of causal perturbation theory to [[quantum field theory on curved spacetimes]] is developed in \begin{itemize}% \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], \emph{Microlocal Analysis and Interacting Quantum Field Theories: Renormalization on Physical Backgrounds}, Commun. Math. Phys. 208 : 623-661, 2000 (\href{https://arxiv.org/abs/math-ph/9903028}{math-ph/9903028}) \item [[Stefan Hollands]], [[Robert Wald]], \emph{Local Wick polynomials and time ordered products of quantum fields in curved spacetime}, Communications in Mathematical Physics, 223(2):289--326, 2001 (\href{https://arxiv.org/abs/gr-qc/0103074}{arXiv:gr-qc/0103074}) \item [[Stefan Hollands]], [[Robert Wald]], \emph{Existence of local covariant time ordered products of quantum fields in curved spacetime}, Communications in Mathematical Physics, 231(2):309--345, 2002 (\href{https://arxiv.org/abs/gr-qc/0111108}{arXiv:gr-qc/0111108}) \item [[Stefan Hollands]], [[Robert Wald]], \emph{On the renormalization group in curved spacetime}, Communications in Mathematical Physics, 237(1-2):123--160, 2003 (\href{https://arxiv.org/abs/gr-qc/0209029}{arXiv:gr-qc/0209029}) \item [[Stefan Hollands]], [[Robert Wald]], \emph{Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes}, Reviews in Mathematical Physics, 17(03):227--311, 2005 (\href{https://arxiv.org/abs/gr-qc/0404074}{arXi:gr-qc/0404074}) \item [[Romeo Brunetti]], [[Michael Dütsch]], [[Klaus Fredenhagen]], \emph{Perturbative Algebraic Quantum Field Theory and the Renormalization Groups}, Adv. Theor. Math. Physics 13 (2009), 1541-1599 (\href{http://arxiv.org/abs/0901.2038}{arXiv:0901.2038}) \end{itemize} Review is in \begin{itemize}% \item [[Stefan Hollands]], [[Robert Wald]], \emph{Quantum fields in curved spacetime}, Physics Reports Volume 574, 16 April 2015, Pages 1-35 (\href{https://arxiv.org/abs/1401.2026}{arXiv:1401.2026}) \end{itemize} \hypertarget{local_covariance}{}\subsubsection*{{Local covariance}}\label{local_covariance} The observation that the method of causal perturbation theory naturally leads to [[locally covariant perturbative quantum field theory]] is due to \begin{itemize}% \item V. A. Il'in and D. S. Slavnov, \emph{Observable algebras in the S-matrix approach}, Theor. Math. Phys. 36 (1978) 32 (\href{http://inspirehep.net/record/135575}{spire}, \href{http://dx.doi.org/10.1007/BF01035870}{doi}) \end{itemize} and was re-discovered and then popularized in \begin{itemize}% \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], section 8 of \emph{Microlocal Analysis and Interacting Quantum Field Theories: Renormalization on Physical Backgrounds}, Commun. Math. Phys. 208 : 623-661,2000 (\href{https://arxiv.org/abs/math-ph/9903028}{math-ph/9903028}) \end{itemize} Review includes \begin{itemize}% \item [[Klaus Fredenhagen]], [[Katarzyna Rejzner]], section 4.1 of \emph{Perturbative Construction of Models of Algebraic Quantum Field Theory} (\href{https://arxiv.org/abs/1503.07814}{arXiv:1503.07814}) \end{itemize} For more on this see the references at \emph{[[locally covariant perturbative quantum field theory]]}. [[!redirects causal perturbation theories]] \end{document}