\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{causally local net of observables} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{basic_general_definition}{Basic general definition}\dotfill \pageref*{basic_general_definition} \linebreak \noindent\hyperlink{extra_axioms}{Extra axioms}\dotfill \pageref*{extra_axioms} \linebreak \noindent\hyperlink{EinsteinLocalities}{Einstein locality}\dotfill \pageref*{EinsteinLocalities} \linebreak \noindent\hyperlink{StrongLocality}{Strong locality}\dotfill \pageref*{StrongLocality} \linebreak \noindent\hyperlink{timeslice_axiom}{Time-slice axiom}\dotfill \pageref*{timeslice_axiom} \linebreak \noindent\hyperlink{duality}{Duality}\dotfill \pageref*{duality} \linebreak \noindent\hyperlink{positive_energy_condition}{Positive energy condition}\dotfill \pageref*{positive_energy_condition} \linebreak \noindent\hyperlink{spectrum_condition}{Spectrum condition}\dotfill \pageref*{spectrum_condition} \linebreak \noindent\hyperlink{special_cases_and_variants}{Special cases and variants}\dotfill \pageref*{special_cases_and_variants} \linebreak \noindent\hyperlink{minkowski_nets__vacuum_representation}{Minkowski nets / Vacuum representation}\dotfill \pageref*{minkowski_nets__vacuum_representation} \linebreak \noindent\hyperlink{conformal_nets}{Conformal nets}\dotfill \pageref*{conformal_nets} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{examples_2}{Examples}\dotfill \pageref*{examples_2} \linebreak \noindent\hyperlink{in_perturbation_theory}{In perturbation theory}\dotfill \pageref*{in_perturbation_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[quantum field theory]] (or [[classical field theory]]) a \emph{causally local net of observables} is a system (a [[co-presheaf]]) of [[algebras of observables]] assigned to regions of [[spacetime]], such that this satisfies a few basic properties, such as notably \emph{[[causal locality]]}, saying that observables whose spacetime [[support]] is [[spacelike]]-separated (graded-)commute with each other ([[Poisson bracket|Poisson]]-commute, in the case of classical field theory). (Beware that the meaning of ``net'' here is vaguely similar to, but different from, the concept of \emph{[[net]]} (as in: generalized [[sequences]] of points) as used in [[topology]]. Better terminology might be ``causally local system of spacetime-localized observables''. But ``local net'' is traditional and has become standard.) In the context of [[algebraic quantum field theory]] the structure of the local net of quantum observables is used as the very [[axiom|axiomatization]] of what a [[quantum field theory]] actually is (``[[Haag-Kastler axioms]]''). This may be thought of as a formalization of a spacetime-localized form of the [[Heisenberg picture]] of [[quantum physics]] (or rather the [[interaction picture]] in the case of [[perturbative AQFT]]); as opposed to the formalization of the [[Schrödinger picture]] in [[FQFT]], where instead the [[state]]-propagation is used as the basic axiom. Traditionally local nets of observables are assumed to take values in [[C\emph{-algebras]], but the basic form of the axioms does not actually refer to [[topology|topological]] structure on the algebras, and makes sense more generally.} In particular in [[perturbative quantum field theory]] made precise via [[causal perturbation theory]], the [[algebras of quantum observables]] are taken to be [[formal power series algebras]] (reflecting the [[infinitesimal]] nature of [[perturbation theory]]) and one \emph{derives} from [[causal additivity]] of the [[S-matrix]] that the perturbative [[quantum observables]] form a local net of formal power series algebras (see at \emph{\href{S-matrix#CausalLocality}{S-matrix -- Causal locality and Quantum observables}}). Accordingly, this infinitesimal/perturbative version of [[AQFT]] is called \emph{[[perturbative AQFT]]}. Other variants may be considered. For [[AQFT on curved spacetimes]] one generalizes from observables associated with regions of [[Minkowski spacetime]] to observables associated with more general [[globally hyperbolic spacetimes]]. Combining this with perturbation theory is then called \emph{[[locally covariant perturbative AQFT]]}. Moreover, if [[gauge theory]] with nontrivial global [[gauge field]] configurations is to be considered ([[instantons]]) then one may show that one needs to consider some kind of [[homotopy theory|homotopy theoretic]] local nets of \emph{[[homotopical algebras]]}. See at \emph{[[homotopical algebraic quantum field theory]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} In the literature there is a certain variance and flexibility of what precisely the axioms on a local net of observables are, though the core aspects are always the same: it is a [[copresheaf]] of ([[C-star algebra|C-star]] [[associative algebra|algebra]] s) on pieces of [[spacetime]] such that algebras assigned to [[causal locality|causally disconnected]] regions commute inside the algebra assigned to any joint neighbourhood. Historically this was first formulated for [[Minkowski spacetime]] only, where it is known as the [[Haag-Kastler axioms]]. Later it was pointed out (\hyperlink{BrunettiFredenhagen}{BrunettiFredenhagen}) that the axioms easily and usefully generalize to arbitrary [[spacetime]]s. We give the modern general formulation first, and then comment on its restriction to special situations. \hypertarget{basic_general_definition}{}\subsubsection*{{Basic general definition}}\label{basic_general_definition} \begin{defn} \label{CatOfSpacetimeEmbeddings}\hypertarget{CatOfSpacetimeEmbeddings}{} Write $LorSp$ for the [[category]] whose \begin{itemize}% \item [[object]]s are [[spacetime]] manifolds; ([[Lorentzian manifold]]s equipped with a time-orientation); \item [[morphism]] are \emph{causal} [[isometry|isometric]] [[embedding]]. \end{itemize} Here we say a morphism $f : X \hookrightarrow Y$ is a \textbf{causal embedding} if for every two points $x_1,x_2 \in X$ we have that $f(x_1)$ is in the [[future]] of $f(x_2)$ in $Y$ only if $x_1$ is in the future of $x_2$ in $X$. \end{defn} Write $Alg$ for a suitable [[category]] of [[associative algebra]]s. Usually this is taken to be the category of [[C-star algebra]]s or that of [[von Neumann algebra]]s. Write \begin{displaymath} Alg_{inc} \hookrightarrow Alg \end{displaymath} for the [[subcategory]] on the [[monomorphism]]s. \begin{defn} \label{}\hypertarget{}{} A \textbf{causally local net of observables} is a [[functor]] \begin{displaymath} \mathcal{A} : LorSp \to Alg_{inc} \to Alg \end{displaymath} such that \begin{itemize}% \item ([[causal locality]]) whenever $X_1 \coprod X_2 \hookrightarrow X$ is a causal embedding, def. \ref{CatOfSpacetimeEmbeddings}, we have that $\mathcal{A}(X_1) \subset \mathcal{A}(X)$ commutes with $\mathcal{A}(X_2) \subset \mathcal{A}(X)$. \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} The [[local quantum field theory|locality]] [[axiom]] encodes the the physical property known as \emph{[[Einstein-causality]]} or \emph{micro-causality}, which states that physical effects do not propagate faster that the speed of light. \end{remark} \begin{remark} \label{}\hypertarget{}{} Many \emph{auxiliary} [[linear operator|operators]] in [[quantum field theory]] do \emph{not} satisfy causal locality: for instance operators associate to [[current]]s in [[gauge theory]]. The idea is that those operators that actually do qualify as \emph{[[observables]]} do satisfy the axiom, however, i.e. in particular those that are [[gauge symmetry|gauge invariant]]. \end{remark} \hypertarget{extra_axioms}{}\subsubsection*{{Extra axioms}}\label{extra_axioms} \hypertarget{EinsteinLocalities}{}\paragraph*{{Einstein locality}}\label{EinsteinLocalities} Commutativity of spacelike separated observables can be argued to capture only part of [[causal locality]]. A natural stronger requirement is that [[spacelike]] separated regions of [[spacetime]] are literally \href{quantum%20mechanics#Subsystems}{independent quantum subsystems} of any larger region. By the formalization of \emph{independent subsystem} in [[quantum mechanics]] this means the following: \begin{defn} \label{EinsteinLocality}\hypertarget{EinsteinLocality}{} A local net $\mathcal{A}$ satisfies \textbf{Einstein locality} if for every causal embedding $X_1 \coprod X_2 \to X$ the \href{http://ncatlab.org/nlab/show/quantum%20mechanics#Subsystems}{subsystems} \begin{displaymath} \mathcal{A}(X_1) \hookrightarrow \mathcal{A}(X) \end{displaymath} and \begin{displaymath} \mathcal{A}(X_2) \hookrightarrow \mathcal{A}(X) \end{displaymath} are \emph{independent} in that the algebra $\mathcal{A}(X_1) \vee \mathcal{A}(X_2) \in \mathcal{A}(X)$ which they generate is [[isomorphism|isomorphic]] to the [[tensor product]] $\mathcal{A}(X_1) \otimes \mathcal{A}(X_2)$. \end{defn} This appears as (\hyperlink{BrunettiFredenhagen}{BrunettiFredenhagen, 5.3.1, axiom 4}). \begin{remark} \label{}\hypertarget{}{} A local net is Einstein local precisely if it is a [[monoidal functor]] \begin{displaymath} \mathcal{A} : (LorSp, \coprod) \to (Alg, \otimes) \,. \end{displaymath} \end{remark} This appears as (\hyperlink{BrunettiFredenhagen}{BrunettiFredenhagen, 5.3.1, theorem 1}). \begin{remark} \label{}\hypertarget{}{} Einstein locality implies [[causal locality]], but is stronger. \end{remark} \begin{remark} \label{}\hypertarget{}{} Other properties implied by Einstein locality are sometimes extracted as separate axioms. For instance the condition that for $X_1 \coprod X_2 \to X$ a causal embedding, we have \begin{displaymath} \mathcal{A}(X_1) \cap \mathcal{A}(X_2) = \mathbb{C} \,. \end{displaymath} \end{remark} \hypertarget{StrongLocality}{}\paragraph*{{Strong locality}}\label{StrongLocality} In (\hyperlink{Nuiten11}{Nuiten 11}) the following variant of [[causal locality]] was considered and shown to be equivalent to a [[descent]] condition for the system of [[Bohr toposes]] associated with a local net of observables \begin{defn} \label{StrongLocality}\hypertarget{StrongLocality}{} \textbf{([[strong causal locality]])} A net of observables is \textbf{[[strong causal locality|strongly (causally) local]]} if it is microlocal (i.e. [[causal locality|causally local]]) in that algebras $A_1 = A(O_1)$ and $A_2 = A(O_2)$ associated with spacelike separated regions commute with each other, and in addition for all commutative subalgebras $C_1 \subset A_1$ and $C_2 \subset A_2$ the algebra $C_1 \vee C_2 \subset A(O_1 \vee O_2)$ satisfies \begin{enumerate}% \item $(C_1 \vee C_2) \cap A_1 = C_1$ \item $(C_1 \vee C_2) \cap A_2 = C_2$. \end{enumerate} \end{defn} This is (\hyperlink{Nuiten11}{Nuiten 11, def. 14}). \begin{remark} \label{}\hypertarget{}{} It is clear that Einstein locality implies strong locality, def. \ref{EinsteinLocality} \begin{displaymath} Einstein\;locality \;\;\Rightarrow \;\; Strong\;locality \,. \end{displaymath} In fact strong locality is strictly weaker than Einstein locality in that there are strongly locally embedded subalgebras which are not Einstein locally embedded. More discussion of this is in (\hyperlink{Wolters13}{Wolters 13, section 6.3.3}). \end{remark} \hypertarget{timeslice_axiom}{}\paragraph*{{Time-slice axiom}}\label{timeslice_axiom} \begin{defn} \label{}\hypertarget{}{} A local net is said to satisfy the \textbf{[[time slice axiom]]} if whenever \begin{displaymath} i : X_1 \to X_2 \end{displaymath} is a causal embedding of [[globally hyperbolic]] [[spacetime]]s such that $X_1$ contains a [[Cauchy surface]] of $X_2$, then \begin{displaymath} \mathcal{A}(i) : \mathcal{A}(X_1) \stackrel{\simeq}{\to} \mathcal{A}(X_2) \end{displaymath} is an [[isomorphism]]. \end{defn} \hypertarget{duality}{}\paragraph*{{Duality}}\label{duality} See [[dual net of von Neumann algebras]] \hypertarget{positive_energy_condition}{}\paragraph*{{Positive energy condition}}\label{positive_energy_condition} (\ldots{}) \hypertarget{spectrum_condition}{}\paragraph*{{Spectrum condition}}\label{spectrum_condition} (\ldots{}) \hypertarget{special_cases_and_variants}{}\subsubsection*{{Special cases and variants}}\label{special_cases_and_variants} \hypertarget{minkowski_nets__vacuum_representation}{}\paragraph*{{Minkowski nets / Vacuum representation}}\label{minkowski_nets__vacuum_representation} \begin{itemize}% \item [[Haag-Kastler vacuum representation]] \end{itemize} \hypertarget{conformal_nets}{}\paragraph*{{Conformal nets}}\label{conformal_nets} The notion of local net in the context of [[conformal field theory]] is a [[conformal net]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} see for instance (\hyperlink{BarGinoux11}{B\"a{}r-Ginoux 11}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[quantum field theory]] \begin{itemize}% \item [[local quantum field theory]], [[local prequantum field theory]] \item [[causal locality]], [[Einstein locality]] \item [[AQFT]] \begin{itemize}% \item [[Haag-Kastler axioms]] \item \textbf{local net of observables} \begin{itemize}% \item [[net of C-star systems]] ([[global gauge group]], [[actions]]) \item [[field net]] \item [[cohomology of local net of observables]] \item [[factorization algebra of observables]], [[chiral algebra]], [[topological chiral homology]], [[blob complex]]. \end{itemize} \end{itemize} \item [[FQFT]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For more details see the references at [[AQFT]]. \hypertarget{general}{}\subsubsection*{{General}}\label{general} The axioms of local nets on general spacetimes were first articulated in \begin{itemize}% \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], \emph{Quantum Field Theory on Curved Backgrounds} (\href{http://arxiv.org/abs/0901.2063}{arXiv:0901.2063}) \end{itemize} A comprehensive review, with plenty of background information, is in \begin{itemize}% \item [[Christian Bär]], [[Klaus Fredenhagen]], (eds.) \emph{Quantum field theory on curved spacetime} , Lecture notes in physics, Springer (2009) \end{itemize} Discussion of Einstein locality of a net of observables equivalently as a [[descent]] condition on the system of [[Bohr toposes]] induced by the [[algebras of observables]] is in \begin{itemize}% \item [[Joost Nuiten]], \emph{[[schreiber:bachelor thesis Nuiten|Bohrification of local nets of observables]]}, Proceedings of \href{http://qpl.science.ru.nl/}{QPL 2011}, \href{http://rvg.web.cse.unsw.edu.au/eptcs/content.cgi?QPL2011}{EPTCS 95, 2012}, pp. 211-218 (\href{http://arxiv.org/abs/1109.1397}{arXiv:1109.1397}) \end{itemize} A review of this with some further discussion is in section 6 of \begin{itemize}% \item Sander Wolters, \emph{Quantum toposophy}, PhD Thesis 2013 (\href{http://www.math.ru.nl/~landsman/Wolters.pdf}{pdf}) \end{itemize} Discussion of properly co-stacky nets of local observables in [[gauge theory]] is in \begin{itemize}% \item [[Marco Benini]], [[Alexander Schenkel]], [[Richard Szabo]], \emph{Homotopy colimits and global observables in Abelian gauge theory} (\href{http://arxiv.org/abs/1503.08839}{arXiv:1503.08839}) \end{itemize} An [[operad]] for local nets of observables in [[AQFT]] is considered in \begin{itemize}% \item [[Marco Benini]], [[Alexander Schenkel]], [[Lukas Woike]], \emph{Operads for algebraic quantum field theory} (\href{https://arxiv.org/abs/1709.08657}{arXiv:1709.08657}) \end{itemize} The [[Boardman-Vogt resolution]] of the [[operad]] for [[local nets of observables]] (\hyperlink{BeniniSchenkelWoike17}{Benini-Schenkel-Woike 17}), lifting it to [[homotopy AQFT]], is considered in \begin{itemize}% \item [[Donald Yau]], \emph{Homotopical Quantum Field Theory} (\href{https://arxiv.org/abs/1802.08101}{arXiv:1802.08101}) \end{itemize} \hypertarget{examples_2}{}\subsubsection*{{Examples}}\label{examples_2} Discussion of standard example includes \begin{itemize}% \item [[Christian Bär]], N. Ginoux, \emph{Classical and quantum fields on lorentzian manifolds}, in \emph{Global Differential Geometry}, Springer Proceedings in Math. 17, Springer-Verlag (2011), 359-400 (\href{http://arxiv.org/abs/1104.1158}{arXiv:1104.1158}) \end{itemize} \hypertarget{in_perturbation_theory}{}\subsubsection*{{In perturbation theory}}\label{in_perturbation_theory} The observation that in [[perturbation theory]] the [[renormalization|Stückelberg-Bogoliubov-Epstein-Glaser]] local [[S-matrix|S-matrices]] yield a [[local net of observables]] was first made in \begin{itemize}% \item V. Il'in, D. Slavnov, \emph{Observable algebras in the S-matrix approach} Theor. Math. Phys. \textbf{36} , 32 (1978) (\href{http://inspirehep.net/record/135575}{spire}, \href{http://dx.doi.org/10.1007/BF01035870}{doi}) \end{itemize} which was however mostly ignored and forgotten. It is taken up again in \begin{itemize}% \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], \emph{Microlocal Analysis and Interacting Quantum Field Theories: Renormalization on Physical Backgrounds} Commun.Math.Phys.208:623-661 (2000) (\href{http://arxiv.org/abs/math-ph/9903028}{arXiv}) \end{itemize} (a quick survey is in section 8, details are in section 2). For more on this see at \emph{[[S-matrix]]} and at \emph{[[pAQFT]]}. [[!redirects causally local nets of observables]] [[!redirects causally local net of quantum observables]] [[!redirects causally local nets of quantum observables]] [[!redirects local net]] [[!redirects local nets]] [[!redirects Haag-Kastler net]] [[!redirects net of observables]] [[!redirects nets of observables]] [[!redirects local net of observables]] [[!redirects local nets of observables]] [[!redirects local net of algebras of observables]] [[!redirects local nets of algebras of observables]] [[!redirects net of quantum observables]] [[!redirects nets of quantum observables]] [[!redirects local net of quantum observables]] [[!redirects local nets of quantum observables]] [[!redirects causal net]] [[!redirects causal nets]] [[!redirects causal net of algebras]] [[!redirects causal nets of algebras]] [[!redirects causally local net]] [[!redirects causally local nets]] \end{document}