\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cellular homology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{cwcomplex}{CW-Complex}\dotfill \pageref*{cwcomplex} \linebreak \noindent\hyperlink{CellularHomology}{Cellular homology}\dotfill \pageref*{CellularHomology} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{cellular_chains}{Cellular chains}\dotfill \pageref*{cellular_chains} \linebreak \noindent\hyperlink{relation_to_singular_homology}{Relation to singular homology}\dotfill \pageref*{relation_to_singular_homology} \linebreak \noindent\hyperlink{RelationToSpectralSequenceOfFilteredSingularComplex}{Relation to the spectral sequence of the filtered singular complex}\dotfill \pageref*{RelationToSpectralSequenceOfFilteredSingularComplex} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Cellular homology is a very efficient tool for computing the [[ordinary homology|ordinary]] [[homology groups]] of [[topological spaces]] which are [[CW complexes]], based on the [[relative singular homology]] of their [[cell complex]]-decomposition and using [[degree of a continuous function|degree]]-computations. Hence cellular homology uses the combinatorial structure of a CW-complex to define, first a [[chain complex]] of \emph{celluar chains} and then the corresponding [[chain homology]]. The resulting \emph{cellular homology} of a CW-complex is [[isomorphism|isomorphic]] to its [[singular homology]], hence to its [[ordinary homology]] as a topological space, and hence provides an efficient method for computing the latter. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{cwcomplex}{}\subsubsection*{{CW-Complex}}\label{cwcomplex} For definiteness and to fix notation which we need in the following, we recall the definition of \emph{[[CW-complex]]}. The actual definition of cellular homology is \hyperlink{CellularHomology}{below}. For $n \in \mathbb{N}$ write \begin{itemize}% \item $S^n \in$ [[Top]] for the standad $n$-[[sphere]]; \item $D^n \in$ [[Top]] for the standard $n$-[[disk]]; \item $S^n \hookrightarrow D^{n+1}$ for the [[continuous function]] that includes the $n$-sphere as the [[boundary]] of the $(n+1)$-disk. \end{itemize} Write furthermore $S^{-1} \coloneqq \emptyset$ for the [[empty set|empty]] topological space and think of $S^{-1} \to D^0 \simeq *$ as the boundary inclusion of the (-1)-sphere into the 0-disk, which is the [[point]]. \begin{defn} \label{CWComplex}\hypertarget{CWComplex}{} A \textbf{[[CW complex]] of [[dimension]] $(-1)$} is the [[empty set|empty]] [[topological space]]. By [[induction]], for $n \in \mathbb{N}$ a \textbf{[[CW complex]] of [[dimension]] $n$} is a [[topological space]] $X_{n}$ obtained from \begin{enumerate}% \item a $CW$-complex $X_{n-1}$ of dimension $n-1$; \item an index set $Cell(X)_n \in Set$; \item a set of [[continuous maps]] (the \textbf{attaching maps}) $\{ f_i \colon S^{n-1} \to X_{n-1}\}_{i \in Cell(X)_n}$ \end{enumerate} as the [[pushout]] $X_n \simeq \coprod_{j \in Cell(X)_n} D^n \coprod_{j \in Cell(X)_n S^{n-1}} X_n$ \begin{displaymath} \itexarray{ \coprod_{j \in Cell(X)_{n}} S^{n-1} &\stackrel{(f_j)}{\to}& X_{n-1} \\ \downarrow && \downarrow \\ \coprod_{j \in Cell(X)_{n}} D^{n} &\to& X_{n} } \,. \end{displaymath} By this construction an $n$-dimensional CW-complex is canonical a [[filtered topological space]] with filter inclusion maps \begin{displaymath} \emptyset \hookrightarrow X_0 \hookrightarrow X_1 \hookrightarrow \cdots \hookrightarrow X_{n-1} \hookrightarrow X_n \end{displaymath} the right vertical morphisms in these pushout diagrams. A general \textbf{[[CW complex]]} $X$ is a [[topological space]] given as the [[sequential colimit]] over a [[tower]] [[diagram]] each of whose morphisms is such a filter inclusion \begin{displaymath} \emptyset \hookrightarrow X_0 \hookrightarrow X_1 \hookrightarrow \cdots \hookrightarrow X \,. \end{displaymath} \end{defn} For the following a CW-complex is all this data: the chosen [[filtered topological space|filtering]] with the chosen attaching maps. \hypertarget{CellularHomology}{}\subsubsection*{{Cellular homology}}\label{CellularHomology} We define ``[[ordinary homology|ordinary]]'' cellular homology with [[coefficients]] in the [[group]] $\mathbb{Z}$ of [[integers]]. The analogous definition for other [[coefficients]] is immediate. \begin{defn} \label{CellularChainComplex}\hypertarget{CellularChainComplex}{} For $X$ a [[CW-complex]], def. \ref{CWComplex}, its \textbf{cellular chain complex} $H_\bullet^{CW}(X) \in Ch_\bullet$ is the [[chain complex]] such that for $n \in \mathbb{N}$ \begin{itemize}% \item the [[abelian group]] of [[chains]] is the [[relative singular homology]] group of $X_n \hookrightarrow X$ relative to $X_{n-1} \hookrightarrow X$: \begin{displaymath} H_n^{CW}(X) \coloneqq H_n(X_n, X_{n-1}) \,, \end{displaymath} \item the [[differential]] $\partial^{CW}_{n+1} \colon H_{n+1}^{CW}(X) \to H_n^{CW}(X)$ is the [[composition]] \begin{displaymath} \partial^{CW}_n \colon H_{n+1}(X_{n+1}, X_n) \stackrel{\partial_n}{\to} H_n(X_n) \stackrel{i_n}{\to} H_n(X_n, X_{n-1}) \,, \end{displaymath} where $\partial_n$ is the [[boundary]] map of the [[singular chain complex]] and where $i_n$ is the morphism on [[relative homology]] induced from the canonical inclusion of pairs $(X_n, \emptyset) \to (X_n, X_{n-1})$. \end{itemize} \end{defn} \begin{prop} \label{}\hypertarget{}{} The composition $\partial^{CW}_{n} \circ \partial^{CW}_{n+1}$ of two differentials in def. \ref{CellularChainComplex} is indeed zero, hence $H^{CW}_\bullet(X)$ is indeed a [[chain complex]]. \end{prop} \begin{proof} On representative singular [[chains]] the morphism $i_n$ acts as the identity and hence $\partial^{CW}_{n} \circ \partial^{CW}_{n+1}$ acts as the double singular boundary, $\partial_{n} \circ \partial_{n+1} = 0$. \end{proof} \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{\href{relative%20homology#RelationToQuotientTopologicalSpaces}{Relative homology - Relation to reduced homology of quotient spaces}} the relative homology group $H_n(X_n, X_{n-1})$ is isomorphic to the the [[reduced homology]] $\tilde H_n(X_n/X_{n-1})$ of $X_n/X_{n-1}$. This implies in particular that \begin{itemize}% \item a \textbf{cellular $n$-chain} is a singular $n$-chain required to sit in filtering degree $n$, hence in $X_n \hookrightarrow X$; \item a \textbf{cellular $n$-cycle} is a singular $n$-chain whose singular boundary is not necessarily 0, but is contained in filtering degree $(n-2)$, hence in $X_{n-2} \hookrightarrow X$. \end{itemize} \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{cellular_chains}{}\subsubsection*{{Cellular chains}}\label{cellular_chains} \begin{prop} \label{}\hypertarget{}{} For every $n \in \mathbb{N}$ we have an [[isomorphism]] \begin{displaymath} H^{CW}_n(X) \coloneqq H_n(X_n, X_{n-1}) \simeq \mathbb{Z}(Cell(X)_n) \end{displaymath} that the group of cellular $n$-chains with the [[free abelian group]] whose set of [[basis]] elements is the set of $n$-[[disks]] attached to $X_{n-1}$ to yield $X_n$. \end{prop} This is discussed at \emph{\href{relative%20homology#RelativeHomologyOfCWComplexes}{Relative homology - Homology of CW-complexes}}. \begin{remark} \label{}\hypertarget{}{} Thus, each cellular differential $\partial^{CW}_n$ can be described as a [[matrix]] $M$ with [[integer]] entries $M_{i j}$. Here an index $j$ refers to the attaching map $f_j \colon S^n \to X_n$ for the $j^{th}$ disk $D^{n+1}$. The integer entry $M_{i j}$ corresponds to a map \begin{displaymath} \mathbb{Z} \cong H_{n+1}(D^{n+1}, S^n) \to H_n(S^n) \to H_n(D^n, S^{n-1}) \cong H_n(S^n) \cong \mathbb{Z} \end{displaymath} and is computed as the [[degree of a continuous function]] \begin{displaymath} S^n \stackrel{f_j}{\to} X_n \to X_n/(X_n - D^n) \cong D^n/S^{n-1} \cong S^n \end{displaymath} where the inclusion $X_n - D^n \hookrightarrow X_n$ corresponds to the attaching map for the $i^{th}$ disk $D^n$. \end{remark} \hypertarget{relation_to_singular_homology}{}\subsubsection*{{Relation to singular homology}}\label{relation_to_singular_homology} \begin{theorem} \label{}\hypertarget{}{} For $X$ a [[CW-complex]], its cellular homology $H^{CW}_\bullet(X)$ agrees with its [[singular homology]] $H_\bullet(X)$: \begin{displaymath} H^{CW}_\bullet(X) \simeq H_\bullet(X) \,. \end{displaymath} \end{theorem} This appears for instance as (\hyperlink{Hatcher}{Hatcher, theorem 2.35}). A proof is below as the proof of cor. \ref{CelluarEquivalentToSingularFromSpectralSequence}. \hypertarget{RelationToSpectralSequenceOfFilteredSingularComplex}{}\subsubsection*{{Relation to the spectral sequence of the filtered singular complex}}\label{RelationToSpectralSequenceOfFilteredSingularComplex} The structure of a [[CW-complex]] on a [[topological space]] $X$, def. \ref{CWComplex} naturally induces on its [[singular simplicial complex]] $C_\bullet(X)$ the structure of a [[filtered chain complex]]: \begin{defn} \label{}\hypertarget{}{} For $X_0 \hookrightarrow X_1 \hookrightarrow \cdots \hookrightarrow X$ a [[CW complex]], and $p \in \mathbb{N}$, write \begin{displaymath} F_p C_\bullet(X) \coloneqq C_\bullet(X_p) \end{displaymath} for the [[singular chain complex]] of $X_p \hookrightarrow X$. The given [[topological subspace]] inclusions $X_p \hookrightarrow X_{p+1}$ induce [[chain map]] inclusions $F_p C_\bullet(X) \hookrightarrow F_{p+1} C_\bullet(X)$ and these equip the singular chain complex $C_\bullet(X)$ of $X$ with the structure of a bounded [[filtered chain complex]] \begin{displaymath} 0 \hookrightarrow F_0 C_\bullet(X) \hookrightarrow F_1 C_\bullet(X) \hookrightarrow F_2 C_\bullet(X) \hookrightarrow \cdots \hookrightarrow F_\infty C_\bullet(X) \coloneqq C_\bullet(X) \,. \end{displaymath} (If $X$ is of finite [[dimension]] $dim X$ then this is a bounded filtration.) Write $\{E^r_{p,q}(X)\}$ for the [[spectral sequence of a filtered complex]] corresponding to this filtering. \end{defn} We identify various of the pages of this spectral sequences with structures in singular homology theory. \begin{prop} \label{PagesInTheSpectralSequenceOfTheFilteredSingularComplex}\hypertarget{PagesInTheSpectralSequenceOfTheFilteredSingularComplex}{} \begin{itemize}% \item $r = 0$ -- $E^0_{p,q}(X) \simeq C_{p+q}(X_p)/C_{p+q}(X_{p-1})$ is the group of $X_{p-1}$-[[relative homology|relative (p+q)-chains]] in $X_p$; \item $r = 1$ -- $E^1_{p,q}(X) \simeq H_{p+q}(X_p, X_{p-1})$ is the $X_{p-1}$-[[relative singular homology]] of $X_p$; \item $r = 2$ -- $E^2_{p,q}(X) \simeq \left\{ \itexarray{ H_p^{CW}(X) & for\; q = 0 \\ 0 & otherwise } \right.$ \item $r = \infty$ -- $E^\infty_{p,q}(X) \simeq F_p H_{p+q}(X) / F_{p-1} H_{p+q}(X)$. \end{itemize} \end{prop} \begin{proof} (\ldots{}) \end{proof} This now directly implies the isomorphism between the cellular homology and the singular homology of a CW-complex $X$: \begin{cor} \label{CelluarEquivalentToSingularFromSpectralSequence}\hypertarget{CelluarEquivalentToSingularFromSpectralSequence}{} \begin{displaymath} H^{CW}_\bullet(X) \simeq H_\bullet(X) \end{displaymath} \end{cor} \begin{proof} By the third item of prop. \ref{PagesInTheSpectralSequenceOfTheFilteredSingularComplex} the $(r = 2)$-page of the spectral sequence $\{E^r_{p,q}(X)\}$ is concentrated in the $(q = 0)$-row. This implies that all [[differentials]] for $r \gt 2$ vanish, since their domain and codomain groups necessarily have different values of $q$. Accordingly we have \begin{displaymath} E^\infty_{p,q}(X) \simeq E^2_{p,q}(X) \end{displaymath} for all $p,q$. By the third and fourth item of prop. \ref{PagesInTheSpectralSequenceOfTheFilteredSingularComplex} this is equivalently \begin{displaymath} G_p H_{p}(X) \simeq H^{CW}_p(X) \,. \end{displaymath} Finally observe that $G_p H_p(X) \simeq H_p(X)$ by the definition of the filtering on the homology as $F_p H_p(X) \coloneq image(H_p(X_p) \to H_p(X))$ and by standard properties of singular homology of [[CW complexes]] discusses at \emph{\href{CW+complex#SingularHomology}{CW complex -- singular homology}}. \hypertarget{software}{}\subsection*{{Software}}\label{software} There are convenient software implementations for large-scale computations of cellular homology: one may use \href{http://www.linalg.org}{LinBox}, \href{http://chomp.rutgers.edu}{CHomP} or \href{http://www.sas.upenn.edu/~vnanda/perseus}{Perseus}. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} A standard textbook account is from p. 139 on in \begin{itemize}% \item [[Allen Hatcher]], \emph{\href{http://www.math.cornell.edu/~hatcher/AT/ATpage.html}{Algebraic topology}}, Cambridge Univ. Press 2002, \end{itemize} Lecture notes include \begin{itemize}% \item Lisa Jeffrey, \emph{Homology of CW-complexes and Cellular homology} (\href{http://www.math.toronto.edu/~mat1300/oldnotes/cellular-homology.pdf}{pdf}) \end{itemize} [[!redirects cellular chain complex]] [[!redirects cellular cohomology]] [[!redirects cellular cochain complex]] \end{document}