\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{chain homology and cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{functoriality}{Functoriality}\dotfill \pageref*{functoriality} \linebreak \noindent\hyperlink{RespectForDirectSum}{Respect for direct sums and filtered colimits}\dotfill \pageref*{RespectForDirectSum} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{InTheContextOfHomotopyTheory}{In the context of homotopy theory}\dotfill \pageref*{InTheContextOfHomotopyTheory} \linebreak \noindent\hyperlink{preliminaries}{Preliminaries}\dotfill \pageref*{preliminaries} \linebreak \noindent\hyperlink{eilenbergmaclane_objects}{Eilenberg-MacLane objects}\dotfill \pageref*{eilenbergmaclane_objects} \linebreak \noindent\hyperlink{homotopy_and_cohomology}{Homotopy and cohomology}\dotfill \pageref*{homotopy_and_cohomology} \linebreak \noindent\hyperlink{chain_homology_as_homotopy}{Chain homology as homotopy}\dotfill \pageref*{chain_homology_as_homotopy} \linebreak \noindent\hyperlink{cohomology_of_cochain_complexes}{Cohomology of cochain complexes}\dotfill \pageref*{cohomology_of_cochain_complexes} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the context of [[homological algebra]], for $V_\bullet \in Ch_\bullet(\mathcal{A})$ a \emph{[[chain complex]]}, its \emph{chain [[homology group]]} in degree $n$ is akin to the $n$-th [[homotopy groups]] of a topological space. It is defined to be the [[quotient]] of the $n$-[[cycles]] by the $n$-[[boundaries]] in $V_\bullet$. [[duality|Dually]], for $V^\bullet \in Ch^\bullet(\mathcal{A})$ a [[cochain complex]], its \emph{cochain [[cohomology group]]} in degree $n$ is the quotient of the $n$-[[cocycles]] by the $n$-[[coboundaries]]. Basic examples are the [[singular homology]] and [[singular cohomology]] of a topological space, which are the (co)chain (co)homology of the [[singular complex]]. Chain homology and cochain cohomology constitute the basic invariants of (co)chain complexes. A [[quasi-isomorphism]] is a [[chain map]] between chain complexes that induces isomorphisms on all chain homology groups, akin to a [[weak homotopy equivalence]]. A [[category of chain complexes]] equipped with quasi-isomorphisms as [[weak equivalences]] is a presentation for the [[stable (infinity,1)-category]] of chain complexes. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathcal{A}$ be an [[abelian category]] such as that of $R$-[[modules]] over a [[commutative ring]] $R$. For $R = \mathbb{Z}$ the [[integers]] this is the category [[Ab]] of [[abelian groups]]. For $R = k$ a [[field]], this is the category [[Vect]] of [[vector spaces]] over $k$. Write $Ch_\bullet(\mathcal{A})$ for the [[category of chain complexes]] in $\mathcal{A}$. Write $Ch^\bullet(\mathcal{A})$ for the [[category of cochain complexes]] in $\mathcal{A}$. We label [[differentials]] in a chain complex as follows: \begin{displaymath} V_\bullet = [ \cdots \to V_{n+1} \stackrel{\partial_n}{\to} V_n \to \cdots ] \end{displaymath} \begin{defn} \label{}\hypertarget{}{} For $V_\bullet \in Ch_\bullet(\mathcal{A})$ a [[chain complex]] and $n \in \mathbb{Z}$, the \textbf{chain homology} $H_n(V)$ of $V$ in degree $n$ is the [[abelian group]] \begin{displaymath} H_n(V) \coloneqq \frac{Z_n(V)}{B_n(V)} = \frac{ker(\partial_{n-1})}{im(\partial_n)} \end{displaymath} given by the [[quotient]] ([[cokernel]]) of the group of $n$-[[cycles]] by that of $n$-[[boundaries]] in $V_\bullet$. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{functoriality}{}\subsubsection*{{Functoriality}}\label{functoriality} \begin{prop} \label{}\hypertarget{}{} For all $n \in \mathbb{N}$ forming chain homology extends to a [[functor]] from the [[category of chain complexes]] in $\mathcal{A}$ to $\mathcal{A}$ itself \begin{displaymath} H_n(-) : Ch_\bullet(\mathcal{A}) \to \mathcal{A} \,. \end{displaymath} \end{prop} \begin{proof} One checks that [[chain homotopy]] (see there) respects [[cycles]] and [[boundaries]]. \end{proof} \begin{prop} \label{ChainHomologyRespectsDirectProduct}\hypertarget{ChainHomologyRespectsDirectProduct}{} Chain homology commutes with [[direct product]] of chain complexes: \begin{displaymath} H_n(\prod_i C^{(i)}) \simeq \prod_i H_n(C^{(i)}) \,. \end{displaymath} Similarly for [[direct sum]]. \end{prop} \hypertarget{RespectForDirectSum}{}\subsubsection*{{Respect for direct sums and filtered colimits}}\label{RespectForDirectSum} \begin{prop} \label{}\hypertarget{}{} The chain homology functor preserves [[direct sums]]: for $A,B \in Ch_\bullet$ and $n \in \mathbb{Z}$, the canonical morphism \begin{displaymath} H_n(A \oplus B) \to H_n(A) \oplus H_n(B) \end{displaymath} is an [[isomorphism]]. \end{prop} \begin{prop} \label{}\hypertarget{}{} The chain homology functor preserves [[filtered colimits]]: for $A \colon I \to Ch_\bullet$ a [[filtered category|filtered]] [[diagram]] and $n \in \mathbb{Z}$, the canonical morphism \begin{displaymath} H_n(\underset{\to_i}{\lim} A_i) \to \underset{\to_i}{\lim} H_n(A_i) \end{displaymath} is an [[isomorphism]]. \end{prop} This is spelled out for instance as (\hyperlink{HopkinsMathew}{Hopkins-Mathew , prop. 23.1}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item For $X$ a [[topological space]] and $Sing X$ its [[singular simplicial complex]], write $N \mathbb{Z}[Sing X]$ for the [[normalized chain complex]] of the [[simplicial abelian group]] that is degreewise the [[free abelian group]] on $Sing X$. The resulting chain homology is the \emph{[[singular homology]]} of $X$ \begin{displaymath} H_\bullet( N \mathbb{Z}[Sing X]) \simeq H_\bullet(X, \mathbb{Z}) \,. \end{displaymath} \item [[Koszul homology]] \item [[Ext]], [[Tor]] \end{itemize} \hypertarget{InTheContextOfHomotopyTheory}{}\subsection*{{In the context of homotopy theory}}\label{InTheContextOfHomotopyTheory} We discuss here the notion of (co)homology of a [[chain complex]] from a more abstract point of view of [[homotopy theory]], using the [[nPOV]] on \emph{[[cohomology]]} as discussed there. A [[chain complex]] in non-negative degree is, under the [[Dold-Kan correspondence]] a [[homological algebra]] model for a particularly nice [[topological space]] or [[∞-groupoid]]: namely one with an abelian group structure on it, a [[simplicial abelian group]]. Accordingly, an unbounded (arbitrary) [[chain complex]] is a model for a [[spectrum]] with abelian group structure. One consequence of this embedding \begin{displaymath} N : Ch_+ \to \infty Grpd \end{displaymath} induced by the Dold-Kan [[nerve]] is that it allows to think of [[chain complexes]] as objects in the [[(∞,1)-topos]] [[∞Grpd]] or equivalently [[Top]]. Every [[(∞,1)-topos]] comes with a notion of [[homotopy]] and [[cohomology]] and so such abstract notions get induced on chain complexes. Of course there is an independent, age-old definition of [[homology]] of chain complexes and, by dualization, of cohomology of cochain complexes. This entry describes how these standard definition of chain homology and cohomology follow from the general [[(∞,1)-topos]] nonsense described at [[cohomology]] and [[homotopy]]. The main statement is that \begin{itemize}% \item the na\"i{}ve [[homology]] groups of a [[chain complex]] are really its [[homotopy groups]], in the abstract sense (i.e. with the chain complex regarded as a model for a space/$\infty$-groupoid); \item the na\"i{}ve cohomology groups of a cochain complex are really the abstract [[cohomology groups]] of the dual [[chain complex]]. \end{itemize} \hypertarget{preliminaries}{}\subsubsection*{{Preliminaries}}\label{preliminaries} Before discussing chain homology and cohomology, we fix some terms and notation. \hypertarget{eilenbergmaclane_objects}{}\paragraph*{{Eilenberg-MacLane objects}}\label{eilenbergmaclane_objects} In a given [[(∞,1)-topos]] there is a notion of [[homotopy]] and [[cohomology]] for every (co-)coefficient object $A$ ($B$). The particular case of [[chain complex]] [[homology]] is only the special case induced from coefficients given by the corresponding [[Eilenberg-MacLane objects]]. Assume for simplicity here and in the following that we are talking about non-negatively graded chain complexes of vector spaces over some field $k$. Then for every $n \in \mathbb{N}$ write \begin{displaymath} \begin{aligned} \mathbf{B}^n k &:= ( \cdots \to \mathbf{B}^n k_n \to \cdots \to \stackrel{\partial}{\to} \mathbf{B}^n k_1 \stackrel{\partial}{\to} \mathbf{B}^n k_0) \\ &= ( \cdots \to k \to \cdots \to 0 \to 0 ) \end{aligned} \end{displaymath} for the $n$th [[Eilenberg-MacLane object]]. Notice that this is often also denoted $k[n]$ or $k[-n]$ or $K(k,n)$. \hypertarget{homotopy_and_cohomology}{}\paragraph*{{Homotopy and cohomology}}\label{homotopy_and_cohomology} With the [[Dold-Kan correspondence]] understood, embedding chain complexes into [[∞-groupoids]], for any chain complexes $X_\bullet$, $A_\bullet$ and $B_\bullet$ we obtain \begin{itemize}% \item the $\infty$-groupoid \begin{displaymath} \mathbf{H}_{\infty Grpd}(X_\bullet, A_\bullet) \end{displaymath} whose * objects are the $A$-valued [[cocycle]]s on $X$; * morphisms are the coboundaries between these [[cocycle]]s; * 2-morphisms are the coboundaries between coboundaries * etc. and where the elements of $\pi_0 \mathbf{H}(X_\bullet,A_\bullet)$ are the cohomology classes \item the $\infty$-groupoids \begin{displaymath} \mathbf{H}_{\infty Grpd}(B_\bullet, X_\bullet) \end{displaymath} whose * objects are the $B$-co-valued cycles on $X$; * morphisms are the boundaries between these cycles; * 2-morphisms are the boundaries between boundaries * etc. and where the elements of $\pi_0 \mathbf{H}(B_\bullet,X_\bullet)$ are the homotopy classes \end{itemize} \hypertarget{chain_homology_as_homotopy}{}\subsubsection*{{Chain homology as homotopy}}\label{chain_homology_as_homotopy} For $X_\bullet := V_\bullet$ any [[chain complex]] and $H_n(V_\bullet)$ its ordinary chain [[homology]] in degree $n$, we have \begin{displaymath} H_n(V_\bullet) \simeq \pi_0 \mathbf{H}(\mathbf{B}^n k_\bullet, V_\bullet) \,. \end{displaymath} A cycle $c : \mathbf{B}^n k_\bullet \to V_\bullet$ is a chain map \begin{displaymath} \itexarray{ \cdots &\stackrel{\partial}{\to}& 0 &\stackrel{\partial}{\to}& k &\stackrel{\partial}{\to}& 0 &\stackrel{\partial}{\to}& \cdots \\ && \downarrow && \downarrow^{c_n} && \downarrow \\ \cdots &\stackrel{\partial}{\to}& V_{n+1} &\stackrel{\partial}{\to}& V_n &\stackrel{\partial}{\to}& V_{n-1} &\stackrel{\partial}{\to}& \cdots } \end{displaymath} Such chain maps are clearly in bijection with those elements $c_n \in V_n$ that are in the kernel of $V_n \stackrel{\partial}{\to} V_{n-1}$ in that $\partial c_n = 0$. A boundary $\lambda : c \to C'$ is a chain homotopy \begin{displaymath} \itexarray{ \cdots &\stackrel{\partial}{\to}& 0 &\stackrel{\partial}{\to}& k &\stackrel{\partial}{\to}& 0 &\stackrel{\partial}{\to}& \cdots \\ && & {}^{\lambda_n}\swarrow \\ \cdots &\stackrel{\partial}{\to}& V_{n+1} &\stackrel{\partial}{\to}& V_n &\stackrel{\partial}{\to}& V_{n-1} &\stackrel{\partial}{\to}& \cdots } \end{displaymath} such that $c' = c + \partial \lambda$. (\ldots{}) \hypertarget{cohomology_of_cochain_complexes}{}\subsubsection*{{Cohomology of cochain complexes}}\label{cohomology_of_cochain_complexes} The ordinary notion of cohomology of a [[chain complex|cochain complex]] is the special case of cohomology in the [[stable (∞,1)-category|stable (∞,1)-]] [[category of chain complexes]]. For $V^\bullet$ a cochain complex let \begin{displaymath} \begin{aligned} X &:= V_\bullet = (V^\bullet)^* \\ &= (\cdots \to X_{n+1} \stackrel{\partial}{\to} X_n \stackrel{\partial}{\to} X_{n-1} \to \cdots) \\ & := (\cdots \to V_{n+1} \stackrel{\partial}{\to} V_n \stackrel{\partial}{\to} V_{n-1} \to \cdots) \end{aligned} \end{displaymath} be the corresponding dual [[chain complex]]. Let \begin{displaymath} \begin{aligned} A &:= \mathbf{B}^n I \\ &= (\cdots \to A_{n+1} \to A_n \to A_{n-1} \to \cdots ) \\ & = (\cdots \to 0 \to I \to 0 \to \cdots ) \end{aligned} \end{displaymath} be the [[chain complex]] with the tensor unit (the [[ground field]], say) in degree $n$ and trivial elsewhere. Then \begin{displaymath} \begin{aligned} \mathbf{H}(X,A) &= Ch(V_\bullet, \mathbf{B}^n I) \end{aligned} \end{displaymath} has \begin{itemize}% \item as objects chain morphisms $c : V_\bullet \to \mathbf{B}^n I$ \begin{displaymath} \itexarray{ \cdots &\to& V_{n+1} &\stackrel{\partial}{\to}& V_{n} &\stackrel{\partial}{\to}& V_{n-1} &\to& \cdots \\ && \downarrow^{c_{n+1}} && \downarrow^{c_{n}} && \downarrow^{c_{n-1}} \\ \cdots &\to& 0 &\stackrel{\partial}{\to}& I &\stackrel{\partial}{\to}& 0 &\to& \cdots } \,. \end{displaymath} These are in canonical bijection with the elements in the kernel of $d_{n}$ of the dual cochain complex $V^\bullet = [V_\bullet,I]$. \item as morphism chain homotopies $\lambda : c \to c'$ \begin{displaymath} \itexarray{ \cdots &\to& V_{n+1} &\stackrel{\partial}{\to}& V_{n} &\stackrel{\partial}{\to}& V_{n-1} &\to& \cdots \\ && && &{}^{\lambda}\swarrow& \\ \cdots &\to& 0 &\stackrel{\partial}{\to}& I &\stackrel{\partial}{\to}& 0 &\to& \cdots } \,. \end{displaymath} \end{itemize} Comparing with the general definition of cocycles and coboudnaries from above, one confirms that \begin{itemize}% \item the \textbf{cocycles} are the chain maps \begin{displaymath} V_\bullet \to I[n]_\bullet \end{displaymath} \item the \textbf{coboundaries} are the chain homotopies between these chain maps. \item the \textbf{coboundaries of coboundaries} are the second order chain homotopies between these chain homotopies. \item etc. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Basics are for instance in section 1.1 of \begin{itemize}% \item [[Charles Weibel]], \emph{[[An Introduction to Homological Algebra]]} \item [[Michael Hopkins]] (notes by [[Akhil Mathew]]), \emph{algebraic topology -- Lectures} (\href{http://people.fas.harvard.edu/~amathew/ATnotes.pdf}{pdf}) \end{itemize} [[!redirects chain homology]] [[!redirects cochain homology]] [[!redirects chain cohomology]] [[!redirects cochain cohomology]] [[!redirects chain homology group]] [[!redirects chain homology groups]] \end{document}