\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{change of enriching category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{enriched_category_theory}{}\paragraph*{{Enriched category theory}}\label{enriched_category_theory} [[!include enriched category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{generalizations_and_enhancements}{Generalizations and enhancements}\dotfill \pageref*{generalizations_and_enhancements} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given two [[monoidal categories]] $(V_1,\otimes_1, I_1)$ and $(V_2, \otimes_2, I_2)$ used for enrichment in [[enriched category theory]] (for instance two [[Bénabou cosmoi]]), a [[lax monoidal functor]] between them \begin{displaymath} F \;\colon\; (V_1, \otimes_1, I_1) \longrightarrow (V_2, \otimes_2, I_2) \end{displaymath} canonically induces a [[2-functor]] \begin{displaymath} F_\ast \;\colon\; V_1 Cat \longrightarrow V_2 Cat \end{displaymath} between [[categories of V-enriched categories]] sending a $V_1$-[[enriched category]] $\mathcal{C}$ to the $V_2$-[[enriched category]] $F_\ast(\mathcal{C})$ such that \begin{enumerate}% \item $F_\ast(\mathcal{C})$ has the same [[objects]] as $\mathcal{C}$; \item the [[hom-objects]] of $F_\ast(\mathcal{C})$ are the [[images]] of the hom-objects of $\mathcal{C}$ under $F$: \begin{displaymath} F_\ast(\mathcal{C})(x,y) \;\coloneqq\; F\big(\mathcal{C}(x,y)\big) \end{displaymath} \item the [[composition]], [[unit]], [[associator]] and [[unitor]] [[morphisms]] in $F_\ast(\mathcal{C})$ are the [[images]] of those of $\mathcal{C}$ composed with the structure morphisms of the [[lax monoidal functor|lax monoidal]]-[[structure]] on $F$. \end{enumerate} (\hyperlink{EilenbergKelly65}{Eilenberg-Kelly 65}) This operation $F_\ast$ is sometimes called \textbf{change of enriching category} or \textbf{change of enriching base} or just \textbf{change of base} (e.g. \hyperlink{Crutwell14}{Crutwell 14, chapter 4}, \hyperlink{Riehl14}{Riehl 14, lemma 3.4.3}). But notice that, despite some vague similarity, this is different from [[base change]] of [[slice categories]]. In the special case that $\mathcal{C}$ has a single object and is hence (if thought of as [[pointed object|pointed]] by that object) equivalently a [[monoid object]] in $V_1$, this statement reduces to the statement that lax monoidal functors preserve [[monoids]] (\href{monoidal+functor#MonoidsToMonoidsByLaxMonoidal}{this Prop.}) \hypertarget{generalizations_and_enhancements}{}\subsection*{{Generalizations and enhancements}}\label{generalizations_and_enhancements} \begin{itemize}% \item The operation of change of enriching category is functorial from [[MonCat]] to [[2Cat]]. In particular, any [[monoidal adjunction]] $V_1\rightleftarrows V_2$ gives rise to a [[2-adjunction]] $V_1 Cat\rightleftarrows V_2 Cat$ (and also for profunctors). \item $V$-enriched categories can be defined more generally when $V$ is a [[multicategory]], and any functor $F:V_1\to V_2$ between multicategories induces a change of enrichment 2-functor. Note that a functor of multicategorise between the underlying multicategories of two monoidal categories corresponds to a \emph{lax} monoidal functor, as in the original version above. The multicategorical version also includes change of enrichment between [[closed categories]]. \item A different generalization is when $V$ is a [[bicategory]], yielding [[bicategory-enriched categories]]. Any lax functor of bicategories induces a similar functor between its 2-categories of enriched categories. \item When $V_1$ and $V_2$ are cocomplete monoidal categories (or locally cocomplete bicategories), so that the bicategories $V_i$-[[Prof]] of $V_i$-categories and $V_i$-[[profunctors]] exist, change of enrichment also induces a [[lax functor]] $V_1 Prof \to V_2 Prof$. To make this version functorial on $MonCat_{cocomplete}$, we need to consider $V_i Prof$ as [[double categories]], yielding a functor from [[MonCat]] to [[DblCat]]. \item Finally, a generalization subsuming all of these is that for any [[virtual double category]] $V$ we can construct another virtual double category $V Prof$, and this construction is functorial. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{Underlying}\hypertarget{Underlying}{} For any a monoidal category $V$, the functor $V(I,-): V \to Set$ is lax monoidal, hence induces a 2-functor from $V Cat$ to $Cat$. This assigns to any $V$-enriched category, $\mathcal{C}$, its [[underlying ordinary category]], usually denoted $\mathcal{C}_0$, defined by $\mathcal{C}_0(x,y) = V(I, hom(x,y))$. \end{example} \begin{example} \label{FreeCats}\hypertarget{FreeCats}{} If $V$ is a [[cocomplete category|cocomplete]] monoidal category, the functor $V(I,-)$ above has a [[left adjoint]] that takes a set $X$ to the [[copower]] of $X$ copies of $I$. The resulting 2-functor $Cat \to V Cat$ takes an ordinary category to the ``free'' $V$-category it generates. Such $V$-categories are used, for instance, in subsuming ``conical'' [[limits]] under enriched [[weighted limits]]. By functoriality, the adjunction between these two functors gives rise to a 2-adjunction $Cat \rightleftarrows V Cat$. \end{example} \begin{example} \label{GenUnderlying}\hypertarget{GenUnderlying}{} More generally, if an adjunction $F:V_1 \rightleftarrows V_2:U$ can be regarded as a [[free-forgetful adjunction]], then the corresponding adjunction between enriched categories can also be so regarded. For instance, if $V_1 = Top$ and $V_2 = G Top$ for some [[topological group]] $G$, then the right adjoint $V_2 Cat \to V_1 Cat$ takes the ``underlying topologically enriched category'' of a category enriched in $G$-spaces (its morphisms are the fixed-point spaces of the original $G$-space-enriched category; we think of these as the ``$G$-equivariant maps'' while the original spaces consisted of not-necessarily-equivariant maps acted on by conjugation). Similarly, any category enriched in [[spectra]] has an underlying category enriched in spaces (whose hom-spaces are the 0-spaces of the original hom-spectra), any [[dg-category]] has an underlying [[Ab-category]] (whose morphisms are the degree-0 ones in the original category), and so on. \end{example} \begin{example} \label{RealSing}\hypertarget{RealSing}{} The [[geometric realization]] and [[total singular complex]] adjunction $Real:SSet \rightleftarrows Top : Sing$ between [[simplicial sets]] and [[topological spaces]] induces another adjunction $SSet Cat \rightleftarrows Top Cat$ between [[simplicially enriched categories]] and [[topologically enriched categories]]. \end{example} \begin{example} \label{HomotopyCat}\hypertarget{HomotopyCat}{} If $V=$[[SSet]] or [[Top]], then the set of connected components $\pi_0:V\to Set$ is lax monoidal. The resulting change of enrichment functor takes a $V$-category $C$ to its ``naive homotopy category'' $h C(x,y) = \pi_0(C(x,y))$ obtained by ``identifying homotopic morphisms''. Similarly, the [[fundamental groupoid]] functor $\Pi_1:V\to Gpd$ is lax monoidal, so any $V$-category has an underlying [[(2,1)-category]]. \end{example} \begin{example} \label{EnrichedHomotopyCat}\hypertarget{EnrichedHomotopyCat}{} An enhancement of the last example is that if $V$ is any [[monoidal model category]], then its [[homotopy category]] $Ho(V)$ comes with a lax monoidal functor $\gamma : V \to Ho(V)$. Thus any $V$-category $C$ has an underlying $Ho(V)$-enriched ``homotopy category'' $h C$. Usually the underlying ordinary category of $h C$ is the naive homotopy category from the previous example. \end{example} \begin{example} \label{Tau1}\hypertarget{Tau1}{} The nerve functor $N:Cat \to SSet$ preserves products and has a left adjoint $\tau_1$ that also preserves products. Thus, we have a change of enrichment adjunction in which any [[2-category]] can be regarded as a [[simplicially enriched category]], and similarly any simplicially enriched category has a ``homotopy 2-category''. The latter plays an important role in the theory of [[quasi-categories]]. \end{example} \begin{example} \label{PolyMorphisms}\hypertarget{PolyMorphisms}{} \textbf{([[poly-morphisms]])} For $F =P \;\colon\; Set \to Set$ the [[power set]]-[[functor]], the change of base functor $P_\ast \;\colon\; Cat \to Cat$ sends plain [[categories]] to plain categories. For $C$ any category, the morphisms of $C^{poly} \coloneqq P\ast(C)$ are called the \emph{[[poly-morphisms]]} of $C$ in \href{poly-morphism#Mochizuki12}{Mochizuki 12, section 0}. \end{example} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Samuel Eilenberg]], [[Max Kelly]], \emph{Closed categories}. Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965). \item [[Geoff Cruttwell]], chapter 4 of \emph{Normed spaces and the Change of Base for Enriched Categories}, 2014 (\href{http://pages.cpsc.ucalgary.ca/~gscruttw/publications/thesis4.pdf}{pdf}) \item [[Emily Riehl]], lemma 3.4.3 in \emph{[[Categorical Homotopy Theory]]}, Cambridge University Press 2014 \end{itemize} [[!redirects changes of enriching category]] [[!redirects changes of enriching categories]] [[!redirects change of enriching categories]] [[!redirects change of enriching base]] [[!redirects changes of enriching base]] [[!redirects changes of enriching bases]] [[!redirects change of base in enriched category theory]] [[!redirects changes of base in enriched category theory]] [[!redirects changes of bases in enriched category theory]] \end{document}