\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{character} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{character_on_a_group}{Character on a group}\dotfill \pageref*{character_on_a_group} \linebreak \noindent\hyperlink{CharacterOfALinearRepresentation}{Character of a linear representation}\dotfill \pageref*{CharacterOfALinearRepresentation} \linebreak \noindent\hyperlink{left_and_right_characters_on_a_ring_over_a_ring}{Left and right characters on a ring over a ring}\dotfill \pageref*{left_and_right_characters_on_a_ring_over_a_ring} \linebreak \noindent\hyperlink{character_of_a_topological_space}{Character of a topological space}\dotfill \pageref*{character_of_a_topological_space} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are many notions of a character for an algebraic structure, often topologized. \hypertarget{character_on_a_group}{}\subsubsection*{{Character on a group}}\label{character_on_a_group} A \emph{multiplicative character} on a ([[discrete group|discrete]]) [[group]] $G$ (a \emph{[[group character]]}) is a [[group homomorphism]] from $G$ to the [[group of units]] $k^\times$ of the [[ground field]] $k$: \begin{displaymath} \chi \;\colon\; G \longrightarrow k^\times \end{displaymath} Since the [[codomain]] $k^\times$ is an [[abelian group]] we have that \begin{enumerate}% \item such a [[group homomorphism]] is [[invariant]] under [[conjugation]], so that a group character descends to a [[function]] on the [[set]] of [[conjugacy classes]] of elements in $G$. \item the collection of characters is itself an [[abelian group]] under pointwise multiplication, this is called the \emph{[[character lattice]]} $Hom(G,k^\times)$ of the group. Similarly the \textbf{cocharacter lattice} is $Hom(k^\times, G)$. \end{enumerate} For more see at \emph{[[group character]]}. For [[topological groups]] one considers [[continuous map|continuous]] characters. Specifically, for a [[locally compact Hausdorff]] group $G$ (often further assumed to be an [[abelian group]]), a \textbf{character} of $G$ is a continuous homomorphism to the [[circle]] group $\mathbb{R}/\mathbb{Z}$. If $G$ is [[profinite group|profinite]], then this is the same as an continuous homomorphism to the [[discrete space|discrete]] group $\mathbb{Q}/\mathbb{Z}$. (See \href{http://mathoverflow.net/questions/86089/two-definitions-of-character-of-topological-groups}{MO}.) \hypertarget{CharacterOfALinearRepresentation}{}\subsubsection*{{Character of a linear representation}}\label{CharacterOfALinearRepresentation} In [[representation theory]], one defines the \emph{[[character of a linear representation]]} $\rho\colon G\to End(V)$ to be the [[group character]] on $G$ given by $g \mapsto Tr \rho(g)$, whenever the [[trace]] in $V$ makes sense (e.g. when $V$ is [[finite-dimensional vector space|finite-dimensional]]). Since such a function is invariant under conjugation, we may equivalently consider it a function on the set of [[conjugacy classes]] of elements in $G$. Sometimes we also extend a character linearly to the free vector space on the set of conjugacy classes. This version of the character can be identified with the [[bicategorical trace]] of the identity map of the representation, considered as a $k[G]$-$k$-module. There is a different notion of an \emph{infinitesimal character} in [[Harish–Chandra theory]] and also a notion of the \emph{formal character}. There are important formulas concerning characters in representation theory, like [[Weyl character formula]], Kirillov character formula, Demazure character formula and so on. There is also a formula for the [[induced character]] of an [[induced representation]]. \hypertarget{left_and_right_characters_on_a_ring_over_a_ring}{}\subsubsection*{{Left and right characters on a ring over a ring}}\label{left_and_right_characters_on_a_ring_over_a_ring} Let $A$ be a unital, not necessarily commutative, [[ring]] (or, more generally, $k$-algebra for $k$-commutative); then a monoid in a category of $A$-bimodules (which are respectively also compatibly $k$-modules), is called an $A$-ring. In other words an $A$-ring $B$ is an object in the [[coslice category]] $A\Ring$; it is thus a ring $B$ equipped with multiplication $\mu_B$ and a map $\eta: A\to B$ of rings. A \textbf{left character} of an $A$-ring $(B,\mu_B,\eta_B)$ is a map $\chi:B\to A$ such that (i) (left $A$-linearity) $\chi(\eta(a)b) = a\chi(b)$ for all $a\in A$, $b\in B$ (ii) (associativity) $\chi(b b') = \chi(b (\eta\circ\chi)(b'))$ for all $b,b'\in B$ (iii) (unitality) $\chi(1_B) = \chi(1_A)$ where we denoted multiplication in $A$ and in $B$ by concatenation. The conditions on $\chi$ can be restated as the requirement that the map $B\otimes A\to A$ given by $b\otimes a\mapsto \chi(b\eta(a))$ is a $B$-action extending the left regular $A$-action (i.e. the multiplication on $A$ considered as a left action). Dually, a \textbf{right character} of an $A$-ring $(B,\mu_B,\eta_B)$ is a map $\chi:B\to A$ such that (i) (right $A$-linearity) $\chi(b\eta(a)) = \chi(b)a$ for all $a\in A$, $b\in B$ (ii) (associativity) $\chi(b b') = \chi((\eta\circ\chi)(b) b')$ for all $b,b'\in B$ (iii) (unitality) $\chi(1_B) = \chi(1_A)$ This is in turn equivalent to extending the right regular action of $A$ to the action of $B$ on $A$. \hypertarget{character_of_a_topological_space}{}\subsubsection*{{Character of a topological space}}\label{character_of_a_topological_space} The character $\chi(X,x)$ of a [[topological space]] $X$ at a point $x$ is the minimal cardinality of a local basis of neighborhoods of point $x$ (local [[topological basis|basis of topology]] on $X$) if it is infinite and aleph zero otherwise. The character of a topological space is the supremum of $\chi(X,x)$ when $x$ runs through $X$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item [[characters are cyclotomic integers]] \end{itemize} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{itemize}% \item [[character table of 2D4=Dic2=Q8]] \item [[character table of 2T]] \item [[character table of 2O]] \item [[character table of 2I]] \item [[character table of GL(2,3)]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Weyl character formula]] \item [[Kac character formula]] \item [[Kac-Weyl character]] \item [[Cheeger-Simons differential character]] \item [[Chern root]], [[splitting principle]] \item [[character ring]] \item [[table of marks]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Character rings of [[compact Lie groups]] are discussed in \begin{itemize}% \item [[Graeme Segal]], \emph{The representation ring of a compact Lie group}, Publications Math\'e{}matiques de l'Institut des Hautes \'E{}tudes Scientifiques January 1968, Volume 34, Issue 1, pp 113-128 (\href{http://archive.numdam.org/numdam-bin/fitem?id=PMIHES_1968__34__113_0}{NUMDAM}) \item Masaru Tackeuchi, \emph{A remark on the character ring of a compact Lie group}, J. Math. Soc. Japan Volume 23, Number 4 (1971), 555-705 (\href{http://projecteuclid.org/euclid.jmsj/1259849785}{Euclid}) \item Troels Roussauc Johansen, \emph{Character Theory for Finite Groups and Compact Lie Groups} \href{http://www.math.upb.de/~johansen/character-theory.pdf}{pdf} \end{itemize} Discussion in the more general context of [[equivariant cohomology|equivariant]] [[complex oriented cohomology theory]] ([[transchromatic character]]) is in \begin{itemize}% \item [[Michael Hopkins]], [[Nicholas Kuhn]], [[Douglas Ravenel]], \emph{Generalized group characters and complex oriented cohomology theories}, J. Amer. Math. Soc. 13 (2000), 553-594 (\href{http://www.ams.org/journals/jams/2000-13-03/S0894-0347-00-00332-5/}{publisher}, \href{http://www.math.rochester.edu/people/faculty/doug/mypapers/hkr.pdf}{pdf}) \end{itemize} for review see \begin{itemize}% \item Arpon Raksit, \emph{Characters in global equivariant homotopy theory}, 2015 \href{http://web.stanford.edu/~arpon/math/files/senior-thesis.pdf}{pdf} \end{itemize} Examples of [[characters of linear representations]] of [[finite groups]] are discussed and listed at \begin{itemize}% \item James Montaldi, \emph{\href{http://www.maths.manchester.ac.uk/~jm/wiki/Representations/Representations}{representations}}, 2008 \end{itemize} [[!redirects character]] [[!redirects characters]] [[!redirects character ring]] [[!redirects character rings]] \end{document}