\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{characteristic polynomial} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{characteristic_polynomial_and_cayleyhamilton_theorem}{Characteristic polynomial and Cayley-Hamilton theorem.}\dotfill \pageref*{characteristic_polynomial_and_cayleyhamilton_theorem} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{characteristic_polynomial_and_cayleyhamilton_theorem}{}\subsection*{{Characteristic polynomial and Cayley-Hamilton theorem.}}\label{characteristic_polynomial_and_cayleyhamilton_theorem} See also \emph{[[determinant]]}. \begin{lemma} \label{}\hypertarget{}{} Let $R$ be a [[commutative ring]], and let $A$ be an $n \times n$ [[matrix]] with entries in $R$. Then there exists an $n \times n$ matrix $\tilde{A}$ with entries in $R$ such that $A \tilde{A} = \tilde{A} A = \det(A) \cdot I_n$. \end{lemma} \begin{proof} We may as well take $R$ to be the [[polynomial ring]] $\mathbb{Z}[a_{i j}]_{1 \leq i, j \leq n}$, since we are then free to interpret the indeterminates $a_{i j}$ however we like along a ring map $\mathbb{Z}[a_{i j}] \to R$. Let $A$ denote the corresponding generic matrix. Guided by Cramer's rule (see [[determinant]]), put \begin{displaymath} \tilde{A}_{j i} = \det(a_1, \ldots, e_i, \ldots a_n), \end{displaymath} the $a_i$ being columns of $A$ and $e_i$, the column vector with $1$ in the $i^{th}$ row and $0$`s elsewhere, appearing as the $j^{th}$ column. If we pretend $A$ is invertible, then we know $A \tilde{A} = \det(A) \cdot I_n = \tilde{A} A$ by [[Cramer's rule]]. We claim this holds for general $A$. Indeed, we can interpret this as a [[polynomial]] equation in $\mathbb{C}[a_{i j}]$ and check it there. As an equation between polynomial functions on the space of matrices $A \in Mat_n(\mathbb{C}) = Spec(\mathbb{C}[a_{i j}])$, it holds on the dense subset $GL_n(\mathbb{C}) \hookrightarrow Mat_n(\mathbb{C})$. Therefore, by continuity, it holds on all of $Mat_n(\mathbb{C})$. But a polynomial function equation with coefficients in $\mathbb{C}$ implies the corresponding polynomial identity, and the proof is complete. \end{proof} \begin{theorem} \label{}\hypertarget{}{} (\textbf{Cayley-Hamilton}) Let $V$ be a finitely generated free module over a commutative ring $R$, and let $f \colon V \to V$ be an $R$-module map. Let $p(t) \in R[t]$ be the \textbf{characteristic polynomial} $\det(t \cdot 1_V - f)$ of $f$, and let $\phi_f \colon R[t] \to Mod_R(V, V)$ be the unique $R$-algebra map sending $t$ to $f$. Then $p(f) \coloneqq \phi_f(p)$ is the zero map $0 \colon V \to V$. \end{theorem} \begin{proof} Via $\phi_f$, regard $V$ as an $R[t]$-module, and with regard to some $R$-basis $\{v_i\}_{1 \leq i \leq n}$ of $V$, represent $f$ by a matrix $A$. Now consider $t \cdot I_n - A$ as an $n \times n$ matrix $B(t)$ with entries in $R[t]$. By definition of the module structure, this matrix $B(t)$, seen as acting on $V^n$, annihilates the length $n$ column vector $c$ whose $i^{th}$ row entry is $v_i$. By the previous lemma, there is $\tilde{B}(t)$ such that $\tilde{B}(t) B(t)$ is $\det(t \cdot I_n - A)$ times the identity matrix. It follows that \begin{displaymath} \det(t \cdot I_n - A) c = \tilde{B}(t) B(t) c = \tilde{B}(t) 0 = 0 \end{displaymath} i.e., $\det(t \cdot I_n - A) \cdot v_i = 0$ for each $i$. Since the $v_i$ form an $R$-basis, the $R[t]$-scalar $\det(t \cdot I_n - A)$ annihilates the $R[t]$-module $V$, as was to be shown. \end{proof} The Cayley-Hamilton theorem easily generalizes to finitely generated $R$-modules (not necessarily free) as follows. Let $f \colon V \to V$ be a module endomorphism, and suppose $\pi \colon R^n \to V$ is an epimorphism. Since $R^n$ is projective, the map $f \circ \pi$ can be lifted through $\pi$ to a map $A \colon R^n \to R^n$. Let $P(t)$ be the characteristic polynomial of $A$. \begin{prop} \label{lem}\hypertarget{lem}{} $P(f) = 0$. \end{prop} \begin{proof} Write $P(t) = \sum_i a_i t^i$. We already know $P(A) = 0$. From $f \circ \pi = \pi \circ A$, it follows that $f^i \circ \pi = \pi \circ A^i$ for any $i \geq 0$. Hence $P(f) \circ \pi = \pi \circ P(A) = 0$. Since $\pi$ is epic, $P(f) = 0$ follows. \end{proof} We give an interesting and perhaps surprising consequence of the Cayley-Hamilton theorem below, after establishing a lemma close in spirit to [[Nakayama's lemma]]. \begin{lemma} \label{}\hypertarget{}{} Suppose $V$ is a finitely generated $R$-module, and $g \colon V \to V$ is a module map such that $g(V) \subseteq I V$ for some ideal $I$ of $R$. Then there is a polynomial $p(t) = t^n + a_1 t^{n-1} + \ldots + a_n$, with all $a_i \in I$, such that $p(g) = 0$. \end{lemma} \begin{proof} For some finite $n \geq 0$, we have a surjective map $p: R^n \to V$. Tensoring $p$ with $I$, we obtain a surjective map $I^n \cong I \otimes_R R^n \stackrel{I \otimes_R p}{\twoheadrightarrow} I \otimes_R V \stackrel{mult}{\twoheadrightarrow} I V$, fitting in a commutative diagram \begin{displaymath} \itexarray{ & & & & & & I^n & \hookrightarrow & R^n \\ & & & & & & \downarrow & & \downarrow _\mathrlap{p} \\ R^n & \stackrel{p}{\to} & V & \stackrel{g}{\to} & im(g) & \stackrel{i}{\hookrightarrow} & I V & \hookrightarrow & V } \end{displaymath} By projectivity of $R^n$, we can lift $i g p: R^n \to I V$ to a map $h: R^n \to I^n$ making the diagram commute. Let $A$ be the $R$-module map $R^n \stackrel{h}{\to} I^n \hookrightarrow R^n$, regarded as a matrix. Then the characteristic polynomial of $A$ satisfies the conclusion, by the Cayley-Hamilton theorem and Proposition \ref{lem}. \end{proof} \begin{prop} \label{surj}\hypertarget{surj}{} Let $V$ be a finitely generated module over a commutative ring $R$, and let $f \colon V \to V$ be a surjective module map. Then $f$ is an isomorphism. \end{prop} \begin{proof} Regard $V$ as a finitely generated $R[t]$-module via $\phi_f \colon R[t] \to Mod_R(V, V)$. Since $f$ is assumed surjective, we have $I V = V$ for the ideal $I = (t)$ of $R[t]$. Now take $g = 1_V$ as in the preceding lemma, a module map over the ring $R' = R[t]$. By the lemma, we see that $g^n + a_1 g^{n-1} + \ldots + a_n = 0$ where $a_i \in (t)$, in other words the $R[t]$-scalar \begin{displaymath} (1 + a_1 + \ldots + a_n)1_V = 0 \end{displaymath} as an operator on $V$. Write $a_i = b_i(t) t$ for polynomials $b_i(t) \in R[t]$. Now we may rewrite the previous displayed equation as \begin{displaymath} 1_V(v) = -(\sum_i b_i(t)) t \cdot v \end{displaymath} for all $v \in V$, which translates into saying that $1_V = -\sum_i b_i(f) f$, i.e., that $-\sum_i b_i(f)$ is a retraction of $f$. Since $f$ is epic, we now see $f$ is an isomorphism. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Characteristic polynomials of [[Frobenius homomorphisms]] acting via [[Galois representations]] constitute [[Artin L-functions]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The proof of the Cayley-Hamilton theorem follows the treatment in \begin{itemize}% \item Serge Lang, \emph{Algebra} ($3^{rd}$ edition), Addison-Wesley, 1993. \end{itemize} The proof of Proposition \ref{surj} on surjective endomorphisms of finitely generated modules was extracted from \begin{itemize}% \item Stacks Project, Commutative Algebra, section 15 (\href{http://math.columbia.edu/algebraic_geometry/stacks-git/algebra.pdf}{pdf}) \end{itemize} [[!redirects Cayley-Hamilton theorem]] [[!redirects characteristic polynomials]] \end{document}