\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{class equation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{centers_of_groups}{Centers of $p$-groups}\dotfill \pageref*{centers_of_groups} \linebreak \noindent\hyperlink{number_of_fixed_points}{Number of fixed points}\dotfill \pageref*{number_of_fixed_points} \linebreak \noindent\hyperlink{wedderburns_theorem}{Wedderburn's theorem}\dotfill \pageref*{wedderburns_theorem} \linebreak \noindent\hyperlink{sylow_theorems}{Sylow theorems}\dotfill \pageref*{sylow_theorems} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The term ``class equation'' (or class formula, or orbit decomposition formula) refers to a basic type of counting argument that comes about by decomposing a [[finite set|finite]] [[G-set]] as a sum of its orbits. It has a number of fundamental applications in [[group theory]]. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} Let $G$ be a [[group]] and let $A$ be a [[G-set]] (given by a [[homomorphism]] $G \to \hom_{Set}(A, A)$ of [[monoids]], with which is associated an [[action]] $\alpha: G \times A \to A$). Recall that $A$ is [[connected object|connected]] in the [[category of G-sets]] if $A$ is [[inhabited set|inhabited]] and the action is [[transitive action|transitive]]; in this case, choosing an [[element]] $a \in A$, there is a [[surjection]] of $G$-sets $G \to A$ sending $1 \mapsto a$, and this induces an [[isomorphism]] $G/Stab(a) \cong A$ where $Stab(a)$ is the [[stabilizer]] of $a$ and $G/Stab(a)$ is the $G$-set consisting of left [[cosets]] of $Stab(a)$. More generally, each $G$-set $A$ admits a canonical decomposition as a [[coproduct]] of its connected components; the components are usually called the [[orbits]] of the action. Choosing a representative element $a_x$ in each orbit $x$, this means we have an isomorphism of $G$-sets \begin{displaymath} A \cong \sum_{orbits x} G/Stab(a_x). \end{displaymath} By taking $G$ and $A$ to be [[finite set|finite]] and counting elements, we get an equation of the form \begin{displaymath} {|A|} = \sum_{orbits x} \frac{{|G|}}{{|Stab(a_x)|}}. \end{displaymath} We call an instance of this equation a \emph{class equation}. By judicious choice of groups $G$ and $G$-sets $A$, often in combination with [[number theory|number-theoretic]] arguments, one can derive many useful consequences; some sample applications are given below. Notice that reading the class equation equivalently as \begin{displaymath} \sum_{orbits x} \frac{{1}}{{|Stab(a_x)|}} = \frac{|A|}{|G|} \end{displaymath} it expresses the [[groupoid cardinality]] of the [[action groupoid]] of $G$ acting on $A$. \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{centers_of_groups}{}\subsubsection*{{Centers of $p$-groups}}\label{centers_of_groups} Let $p$ be a [[prime number|prime]]; recall that a $p$-[[p-primary group|group]] is a [[finite group]] whose [[order of a group|order]] is a power of $p$. A basic structural result is the following. \begin{prop} \label{pgroup}\hypertarget{pgroup}{} A non-trivial $p$-group $G$ has a nontrivial [[center]] $Z(G)$. \end{prop} \begin{proof} Let $G$ act on itself by the [[conjugation action]] $G \times G \to G$, $(g, h) \mapsto g h g^{-1}$. In this case an orbit $Orb(h)$ is usually called the [[conjugacy class]] of $h$, and $Orb(h)$ is trivial (consists of exactly one element $h$) iff $h$ belongs to $Z(G)$. In any case ${|Orb(h)|} = \frac{{|G|}}{{|Stab(h)|}}$ divides ${|G|} = p^n$, and therefore $p$ divides ${|Orb(h)|}$ if $h$ is noncentral. In this case the class equation takes the form \begin{displaymath} {|G|} = {|Z(G)|} \; + \sum_{nontrivial\; orbits x} \frac{{|G|}}{{|Stab(a_x)|}} \end{displaymath} and now since $p$ divides ${|G|}$ as well as each term in the sum over nontrivial orbits, it must also divide ${|Z(G)|}$. In particular, $Z(G)$ has more than one element. \end{proof} It follows by [[induction]] that $p$-groups are [[solvable group|solvable]], since the center is a [[normal subgroup]] and the quotient $G/Z(G)$ is also a $p$-group. Since a group obtained from an abelian group by repeated central extensions is nilpotent, $p$-groups are in fact [[nilpotent group|nilpotent]]. \hypertarget{number_of_fixed_points}{}\subsubsection*{{Number of fixed points}}\label{number_of_fixed_points} An elementary observation that is frequently useful is that the number of [[fixed points]] of an [[involution]] on a [[finite set]] $S$ has the same parity as $S$. This is a statement about $\mathbb{Z}/(2)$-sets; we generalize this to a statement about $G$-sets for general $p$-groups $G$. (Again, a fixed point of a $G$-set is an element whose orbit is a singleton.) \begin{prop} \label{pparity}\hypertarget{pparity}{} If $G$ is a $p$-group acting on a set $A$, then \begin{itemize}% \item ${|A|} \equiv {|Fix(A)|} \; mod p$. \end{itemize} As special cases, if there is just one fixed point, then ${|A|} \equiv 1 \; mod p$, and if $p$ divides ${|A|}$, then $p$ divides ${|Fix(A)|}$. \end{prop} \begin{proof} The class equation takes the form \begin{displaymath} {|A|} = {|Fix(A)|} \; + \sum_{nontrivial\; orbits x} \frac{{|G|}}{{|Stab(a_x)|}} \end{displaymath} where $p$ divides each summand over nontrivial orbits on the right, since $G$ is a $p$-group. Now reduce mod $p$. \end{proof} \hypertarget{wedderburns_theorem}{}\subsubsection*{{Wedderburn's theorem}}\label{wedderburns_theorem} In the theory of finite [[projective planes]], an important result is that a projective plane is Pappian if it is Desarguesian. The purely algebraic version of this is Wedderburn's theorem: \begin{theorem} \label{}\hypertarget{}{} A finite [[division ring]] $D$ is commutative. \end{theorem} \begin{proof} \textbf{(Witt)} The center of $D$ is a [[field]]; if $D$ is of characteristic $p \gt 0$, then the center $F$ has $q = p^f$ elements for some $f$. We may regard $D$ as an $F$-vector space of dimension $n$, whence the number of elements of its multiplicative group $D^\times$ is $q^n-1$. The conjugation action of $D^\times$ on itself yields a decomposition \begin{displaymath} D^\times \cong F^\times \; + \sum_{nontrivial\; orbits x} \frac{{|D^\times|}}{{|Stab(a_x)|}} \end{displaymath} where again the elements of the center $F^\times = Z(D^\times)$ correspond to the trivial orbits. The stabilizer of any $a_x$, together with $0$, forms a division ring (strictly) intermediate between $F$ and $D$; usually this is called the [[centralizer]] $C(a_x)$ of $a_x$. Putting $d_x = dim_F(C(a_x))$, the division ring $C(a_x)$ has $q^{d_x}$ elements, and notice $d_x$ divides $n$ because $n/d_x$ is just the dimension of $D$ seen as a vector space (module) over $C(a_x)$. Thus ${|Stab(a_x)|} = q^{d_x} - 1$, and we have a class equation \begin{displaymath} q^n - 1 = q - 1 + \sum_x \frac{q^n - 1}{q^{d_x} - 1}. \end{displaymath} Now let $\zeta \in \mathbb{C}$ be any primitive $n^{th}$ [[root of unity]]. Since $z - \zeta$ divides each polynomial $z^n-1$ and $\frac{z^n - 1}{z^{d_x} - 1}$, so does $\prod_{prim.\; \zeta} (z-\zeta)$. It follows that the algebraic integer $\prod_{prim.\; \zeta} (q - \zeta)$ divides each of the integers $q^n-1$ and $\frac{q^n - 1}{q^{d_x} - 1}$, and hence divides $q-1$ according to the class equation. But also ${|q - \zeta|} \geq {|q-1|}$ for any root of unity $\zeta$. Thus ${|q - \zeta|} = {|q-1|}$ and $n = 1$, i.e., $F = Z(D)$ is all of $D$ as was to be shown. \end{proof} \hypertarget{sylow_theorems}{}\subsubsection*{{Sylow theorems}}\label{sylow_theorems} Let $G$ be a finite group of order $n$, and suppose that $p$ is a prime that divides $n$; say $n = p^f u$ where $p$ does not divide $u$. Recall that a [[Sylow p-subgroup]] is a $p$-subgroup of maximal order $p^f$. A fundamental fact of group theory is that Sylow $p$-subgroups exist and they are all conjugate to one another; also the number of Sylow $p$-subgroups is $\equiv 1 \; mod p$. Existence of Sylow $p$-subgroups can be proven by exploiting the same type of argument as in the proof of Proposition \ref{pgroup}: \begin{theorem} \label{ppower}\hypertarget{ppower}{} If $G$ has order $n$ and $p^k$ is a prime power dividing $n$, then there is a subgroup of $G$ of order $p^k$. \end{theorem} \begin{proof} First we show that Sylow subgroups exist. We start by observing that if a group $H$ has a $p$-Sylow subgroup $P$, then so does any subgroup $G$. First note that if we let $G$ act on $H/P$ by left translation, then the stabilizer of any element $h P$ is $G \cap h P h^{-1}$, a $p$-group since $h P h^{-1}$ is. Then note that since $H/P$ has cardinality prime to $p$, so must one of its [[connected object|connected components]] $G/Stab(a_x)$ in its $G$-set decomposition \begin{displaymath} H/P \cong \sum_{orbits\; x} G/Stab(a_x), \end{displaymath} and this makes $Stab(a_x)$ a $p$-Sylow subgroup of $G$. Then, if $G$ is any group, and $n = ord(G)$, apply this observation to the embedding \begin{displaymath} G \stackrel{Cayley}{\hookrightarrow} Perm({|G|}) \cong S_n \hookrightarrow GL_n(\mathbb{Z}/(p)) = H \end{displaymath} where we embed the [[symmetric group]] $S_n$ via [[permutation matrices]] into the group $H$ of $n \times n$ invertible matrices over $\mathbb{Z}/(p)$. The group $H$ has order $(p^n - 1)(p^n - p)\ldots (p^n - p^{n-1})$, with maximal $p$-factor $p^{n(n-1)/2}$. It thus has a $p$-Sylow subgroup given by unitriangular matrices, i.e., upper-triangular matrices with all $1$'s on the diagonal. Therefore $p$-Sylow subgroups $P$ exist for any $G$. Finally, note that by Proposition \ref{pgroup}, $P$ is solvable and therefore has a [[composition series]] \begin{displaymath} \{1\} = P_0 \subset P_1 \subset \ldots \subset P \end{displaymath} where each $P_k$ has order $p^k$. \end{proof} \begin{theorem} \label{}\hypertarget{}{} If $H$ is a $p$-subgroup of $G$ and $P$ is a Sylow $p$-subgroup, then $g^{-1} H g \subseteq P$ for some $g \in G$. In particular, all Sylow $p$-subgroups are conjugate to one another. \end{theorem} \begin{proof} $G$ acts on the set of cosets $G/P$ as usual by left translation, and we may restrict the action to the $p$-subgroup $H$. By maximality of $P$, we see ${|G/P|}$ is prime to $p$, and so by Proposition \ref{pparity}, ${|Fix_H(G/P)|}$ is also prime to $p$. In particular, $Fix_H(G/P)$ has at least one element, say $g P$. We infer that $h g P = g P$ for all $h \in H$, or that $g^{-1} h g P = P$ for all $h \in H$, and this implies that $g^{-1} H g \subseteq P$. \end{proof} \begin{theorem} \label{}\hypertarget{}{} The number of Sylow $p$-subgroups of $G$ is $\equiv 1 \; mod p$. \end{theorem} \begin{proof} Let $Y$ be the set of Sylow $p$-subgroups; $G$ acts on $Y$ by conjugation. As all Sylow $p$-subgroups are conjugate, there is just one orbit of the action, and the stabilizer of an element $P \in Y$ is just the [[normalizer]] $N_G(P)$ (by definition of normalizer). Thus $Y \cong G/N_G(P)$ as $G$-sets. Restrict the action to the subgroup $P$. Of course the element $P \in Y$ is a fixed point of this restricted action, and if $Q$ is any other fixed point, it means $x Q x^{-1} = Q$ for all $x \in P$, whence $P \subseteq N_G(Q)$. Now: $P, Q$ are both Sylow $p$-subgroups of $N_G(Q)$ and are therefore conjugate to each other (as seen within the group $N_G(Q)$). But $Q$ is already fixed by the conjugation action in its stabilizer $N_G(Q)$, so we conclude $P = Q$. We conclude $Fix_P(Y)$ has exactly one element. From ${|Y|} \equiv {|Fix_P(Y)|} \; mod p$, the theorem follows. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[class function]] \item [[Klein geometry]] \end{itemize} [[!redirects class equations]] [[!redirects class formula]] [[!redirects class formulas]] [[!redirects conjugation class formula]] [[!redirects conjugation class formulas]] [[!redirects orbit decomposition formula]] \end{document}