\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{classical Adams spectral sequence} \begin{quote}% This entry is about the classical Adams spectral sequence only. For more general discussion see at \emph{[[Adams spectral sequence]]}. under construction \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{MotivationFromHurewiczTheoremAndSerreSpectralSequence}{Via iterated Hurewicz theorem and Serre spectral sequence}\dotfill \pageref*{MotivationFromHurewiczTheoremAndSerreSpectralSequence} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{generators_in_low_range}{Generators in low range}\dotfill \pageref*{generators_in_low_range} \linebreak \noindent\hyperlink{further}{Further}\dotfill \pageref*{further} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{classical Adams spectral sequence} (\hyperlink{Adams58}{Adams 58}) is a type of [[spectral sequences]] used for computations in [[stable homotopy theory]]. It computes the [[homotopy groups of spheres]] at prime 2 from [[homology]]/[[cohomology]], as [[modules]]/[[comodules]] over its [[Steenrod operations]]. The Adams spectral sequence may be seen as a variant of the [[Serre spectral sequence]] obtained by replacing a single fibration by an ``[[Adams resolution]]''. The original \emph{clasical Adams spectral sequenc} for [[ordinary cohomology]] is further refined by the \emph{[[Adams-Novikov spectral sequence]]} (\hyperlink{Novikov67}{Novikov 67}) by replacing [[ordinary cohomology]] modulo $p$ by [[complex cobordism cohomology theory]] or [[Brown-Peterson theory]] or the like. Generally, for $E$ a suitable [[E-infinity algebra]] there is a corresponding \emph{$E$-[[Adams spectral sequence]]} whose second page is given by $E$-[[generalized cohomology]] and which arises as the [[spectral sequence of a simplicial stable homotopy type]] of the [[cosimplicial object|cosimplicial]] object which is the [[Cech nerve]]/[[Sweedler coring]]/[[Amitsur complex]] of $E$. As such the Adams spectral sequence is an analog in [[stable homotopy theory]] of the [[Bousfield-Kan spectral sequence|Bousfield-Kan]] [[homotopy spectral sequence]] in unstable [[homotopy theory]]. \hypertarget{MotivationFromHurewiczTheoremAndSerreSpectralSequence}{}\subsubsection*{{Via iterated Hurewicz theorem and Serre spectral sequence}}\label{MotivationFromHurewiczTheoremAndSerreSpectralSequence} The classical Adams spectral sequence may be motivated from the strategy to compute [[homotopy groups]] from [[cohomology groups]] by subsequently applying the [[Hurewicz theorem]] to compute the lowest-degree non-trivial homotopy group from the corresponding [[cohomology group]], then co-killing that by forming its [[homotopy fiber]], finally applying the [[Serre spectral sequence]] to identify the next lowest non-trivial cohomology group of that fiber, and then iterating this process. The Adams spectral sequence arises when in this kind of strategy instead of co-killing only the lowest lying [[cohomology group]], one at a time, one co-kills \emph{all} nontrivial cohomology groups, then forms the corresponding [[homotopy fiber]] and so on. This was apparently historically the way that [[John Adams]] indeed proceeded from [[Jean-Pierre Serre]]`s approach and this is still a good motivation for the whole construction. A nice exposition is in (\hyperlink{Wilson13}{Wilson 13, 1.1}). We now say this again in more detail. Given $n \in \mathbb{N}$, consider the probem of computing the [[homotopy groups of spheres|homotopy groups]] $\pi_k(S^n) \;mod \;2$ of the [[n-sphere]] $S^n$. For $k \leq n$ this is clear: first for $k \lt n$ they all vanish, and second for $k = n$ we have, by the very nature of [[Eilenberg-MacLane spaces]] $K(\mathbb{Z}_2, n)$, that the [[ordinary cohomology]] is \begin{displaymath} H^n(S^n, \mathbb{Z}_2) \simeq [S^n, K(\mathbb{Z}_2,n)] \simeq \pi_n(K(\mathbb{Z}_2,n)) \simeq \mathbb{Z}_2 \end{displaymath} so that by the [[Hurewicz theorem]] it follows that also \begin{displaymath} \pi_n(S^n) \;mod\;2 \;\simeq \mathbb{Z}_2 \,. \end{displaymath} The [[Hurewicz theorem]] does not say anything beyond the first non-vanishing cohomology group, but so to apply it again we can move up one step in the [[Whitehead tower]] of $S^n$ and hence consider the [[homotopy fiber]] \begin{displaymath} \itexarray{ F_1 \\ \downarrow \\ S^n &\stackrel{c_1}{\longrightarrow}& K(\mathbb{Z}_2,n) } \end{displaymath} of the generator $[c_1] = 1 \in \pi_n(S^n) \simeq \mathbb{Z}_2$. To apply the [[Hurewicz theorem]] to that fiber we need to know its lowest non-trivial [[cohomology group]] again, and this is computed via the [[Serre spectral sequence]] applied to this [[fiber sequence]]. From here on the process repeats, and one moves higher through the [[Whitehead tower]] of $S^n$ \begin{displaymath} \itexarray{ \vdots \\ \downarrow \\ F_1 &\stackrel{c_2}{\longrightarrow}& K(\mathbb{Z}_2, n+1) \\ \downarrow \\ S^n &\stackrel{c_1}{\longrightarrow}& K(\mathbb{Z}_2,n) } \,. \end{displaymath} The Adams spectral sequence arises from this strategy by co-killing not just the first non-trivial [[cohomology group]] at each stage, but \emph{all} nontrivial cohomology groups at a given stage. This is done in [[stable homotopy theory]], so let now $X$ be a [[spectrum]] (for instance the [[sphere spectrum]] $X = \mathbb{S}$ if we still with the computation of the [[stable homotopy groups of spheres]]). Write $H \mathbb{F}_2$ for the [[Eilenberg-MacLane spectrum]] for [[ordinary cohomology]] with [[coefficients]] in $\mathbb{Z}_2$, so that an element in [[cohomology]] \begin{displaymath} [c] \in H^n(X) \end{displaymath} is represented by the [[homotopy class]] of a [[homomorphism]] of [[spectra]] of the form \begin{displaymath} c \;\colon\; X \longrightarrow \Sigma^n H\mathbb{F}_2 \end{displaymath} (a [[cocycle]]), where ``$\Sigma$'' denotes [[suspension]], as usual. If $X$ is a [[spectrum]] of [[finite type]] then there is a [[finite]] $I$ of non-trivial cohomology classes like this, and a choice of [[cocycles]] $c_i$ for each of them gives a single map \begin{displaymath} f_0 \coloneqq (c_i)_I \;\colon\; X \longrightarrow K_0 \coloneqq \bigvee_{i \in I} \Sigma^{n_i}H \mathbb{F}_2 \end{displaymath} into a [[generalized Eilenberg-MacLane spectrum]]. As before, this map classifies its [[homotopy fiber]] \begin{displaymath} \itexarray{ F_1 \\ \downarrow \\ X &\stackrel{f_0}{\longrightarrow}& K_0 } \end{displaymath} which may be thought of as encoding all information about $X$ beyond its [[cohomology groups]]. Iterating this process gives the corresponding analog of the [[Whitehead tower]], called the \emph{[[Adams resolution]]} of $X$: \begin{displaymath} \itexarray{ \vdots \\ \downarrow \\ F_2 &\stackrel{f_2}{\longrightarrow}& K_2 \\ \downarrow \\ F_1 &\stackrel{f_1}{\longrightarrow}& K_1 \\ \downarrow \\ X &\stackrel{f_0}{\longrightarrow}& K_0 } \,. \end{displaymath} The \emph{Adams spectral sequence} is that induced by the [[exact couple]] obtained by applying $\pi_\bullet$ to this [[Adams resolution]]. We now say this more in detail. The [[long exact sequences of homotopy groups]] for all the [[homotopy fibers]] in this diagram arrange into a diagram of the form \begin{displaymath} \itexarray{ \vdots \\ \downarrow & \nwarrow \\ \pi_\bullet(F_2) &\stackrel{\pi_\bullet(f_2)}{\longrightarrow}& \pi_\bullet(K_2) \\ \downarrow & \nwarrow^{\mathrlap{\partial_2}} \\ \pi_\bullet(F_1) &\stackrel{\pi_\bullet(f_1)}{\longrightarrow}& \pi_\bullet(K_1) \\ \downarrow & \nwarrow^{\mathrlap{\partial_1}} \\ \pi_\bullet(X) &\stackrel{\pi_\bullet(f_0)}{\longrightarrow}& \pi_\bullet(K_0) } \,, \end{displaymath} where the diagonal maps are the [[connecting homomorphisms]] and hence decrease degree in $\pi_\bullet$ by one. The idea now is to compute the [[homotopy groups]] of $X$ from the decomposed information in this diagram as follows. First, by construction the homotopy groups $\pi_\bullet(K_s)$ are known, therefore we can identify elements \begin{displaymath} \sigma \in \pi_\bullet(X) \end{displaymath} if they come from elements \begin{displaymath} \sigma_s \in \pi_\bullet(X_s) \end{displaymath} whose image \begin{displaymath} \pi_\bullet(f_s)(\sigma_s) \in \pi_\bullet(K_s) \end{displaymath} we understand. So the task is to understand the image of $\pi_\bullet(f_s)$ in $\pi_\bullet(K_s)$, for each $s$. By [[exact sequence|exactness]] an element $\kappa_s \in \pi_\bullet(K_s)$ is in this image if its image \begin{displaymath} \rho_{s+1} \coloneqq \partial(\kappa_s) \in \pi_{\bullet-1}(X_{s+1}) \end{displaymath} vanishes. Now, by construction of the resolution, ``evidence'' for this is that $f_{s+1}(\partial(\kappa_s)) \in \pi_{\bullet-1}(K_{s+1})$ vanishes, which in turn by [[exact sequence|exactness]] means equivalently that $\partial(\kappa_s)$ is the image of an element $\rho_{s+2} \in \pi_{\bullet-1}(X_{s+2}) \to \pi_{\bullet-1}(X_{s+1})$. Now again ``evidence'' for $\rho_{s+2}$ to vanish is that its image $f_{s+2}(\rho(s+2))$ vanishes, which again means that it comes from an element $\rho_{s+3} \in \pi_{\bullet-1}(X_{s+3}) \to \pi_{\bullet-1}(X_{s+2})$. Proceeding by [[induction]] this way, we find that accumulated ``evidence'' in homotopy groups of $K_\bullet$ for an element $\kappa_s$ to represent an element in $\pi_\bullet(X)$ is that its differential $\partial \kappa_s$ factors through all the $\pi_{\bullet-1}(X_{s+k}) \to \pi_{\bullet-1}(X_s)$. This in turn means that it factors through the [[inverse limit]] $\underset{\leftarrow}{\lim}_s \pi_{\bullet-1}(X_s)$. Such an element $\kappa_s$ with \begin{displaymath} \partial \kappa_s \in \underset{\leftarrow}{\lim}_s \pi_{\bullet-1}(X_s) \to \pi_{\bullet-1}(X_{s+1}) \end{displaymath} is called a \emph{permanent cycle}. In good cases, the [[Adams resolution]] is indeed a [[resolution]] which means that the [[inverse limit]] $\underset{\leftarrow}{\lim}_s X_s$ is in fact [[contractible]]. This means that all the ``evidence'' accumulated in a permanent cycle is indeed sufficient evidence to prove the existence of an element $\sigma_s \in \pi_\bullet(X_s)$ and hence of an element $\sigma \in \pi_\bullet(X)$. A trivial way for this to be the case is that the original $\sigma_s$ is itself in the image under $\partial$ of some element, in which case $\kappa_s = 0$ already all by itself. These elements are called \emph{eventual boundaries}. Therefore if the Adams resolution is indeed a resolution, then the quotient group \begin{displaymath} \frac{permanent\;cycles}{eventual\;boundaries} \end{displaymath} gives elements in $\pi_\bullet(S)$, and this quotient is what the Adams spectral sequence computes. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{generators_in_low_range}{}\subsubsection*{{Generators in low range}}\label{generators_in_low_range} For the moment see at \emph{[[May spectral sequence]]}. \hypertarget{further}{}\subsubsection*{{Further}}\label{further} $h_j$ is a permanent cycle in the Adams spectral sequence if $\mathbb{R}^{(2^j)}$ admits the structure of a real [[division algebra]] Adams: \ldots{} \begin{displaymath} d_2(h_{j+1}) = h_0 h_j^2 \end{displaymath} Mahowald-Tangora: $h_4^2$ is a permanent cycle Barratt-Jones-Mahowald: $h_5^2$ is a permanent cycle Hill-Hopkins-Ravenel: for $j \gt 7$ then $h_j^2$ is not a permanent cycle. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[May spectral sequence]], [[Curtis algorithm]] \item [[Adams-Novikov spectral sequence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original article is \begin{itemize}% \item [[Frank Adams]], \emph{On the structure and applications of the Steenrod algebra}, Comm. Math. Helv. 32 (1958), 180--214. \end{itemize} Textbook accounts proceeding in the [[coalgebra]] picture include \begin{itemize}% \item [[Doug Ravenel]], chapter 3 of \emph{[[Complex cobordism and stable homotopy groups of spheres]]}, 1986/2003 \item [[Stanley Kochman]], chapter 5 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \end{itemize} Further review includes \begin{itemize}% \item [[Robert Mosher]], [[Martin Tangora]], section 18 of \emph{Cohomology Operations and Application in Homotopy Theory}, Harper and Row (1968) (\href{www.maths.ed.ac.uk/~aar/papers/moshtang.pdf}{pdf}) \item [[John McCleary]], chapter 9 of \emph{A User's Guide to Spectral Sequences}, Cambridge University Press (1985, 2001) \item [[Robert Bruner]], \emph{An Adams spectral sequence primer}, 2009 (\href{http://www.math.wayne.edu/~rrb/papers/adams.pdf}{pdf}) \item [[John Rognes]], \emph{The Adams spectral sequence} (following \hyperlink{Bruner09}{Bruner 09}), 2012 (\href{http://folk.uio.no/rognes/papers/notes.050612.pdf}{pdf}) \end{itemize} and \begin{itemize}% \item [[Alexander Kupers]], \emph{An introduction to the Adams spectral sequence} (following \hyperlink{Rognes12}{Rognes 12}) (\href{http://math.stanford.edu/~kupers/adamsss.pdf}{pdf}) \item Paolo Masulli, \emph{Stable homotopy and the Adams spectral sequence} (\href{http://www.math.ku.dk/~jg/students/masulli.msproject.2011.pdf}{pdf}) \item \href{http://www.math.harvard.edu/~sia/notes/classical_topology_adams.pdf}{pdf} \end{itemize} \end{document}