\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{classical model structure on simplicial sets} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{background_on_combinatorial_topology}{Background on combinatorial topology}\dotfill \pageref*{background_on_combinatorial_topology} \linebreak \noindent\hyperlink{simplicial_sets}{Simplicial sets}\dotfill \pageref*{simplicial_sets} \linebreak \noindent\hyperlink{simplicial_homotopy}{Simplicial homotopy}\dotfill \pageref*{simplicial_homotopy} \linebreak \noindent\hyperlink{kan_fibrations}{Kan fibrations}\dotfill \pageref*{kan_fibrations} \linebreak \noindent\hyperlink{geometric_realization}{Geometric realization}\dotfill \pageref*{geometric_realization} \linebreak \noindent\hyperlink{TheClassicalModelStructure}{The classical model structure $sSet_{Quillen}$}\dotfill \pageref*{TheClassicalModelStructure} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{basic_properties}{Basic properties}\dotfill \pageref*{basic_properties} \linebreak \noindent\hyperlink{Properness}{Properness}\dotfill \pageref*{Properness} \linebreak \noindent\hyperlink{quillen_equivalence_with_}{Quillen equivalence with $Top_{Quillen}$}\dotfill \pageref*{quillen_equivalence_with_} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{classical model structure on simplicial sets} or \emph{Kan-Quillen model structure} , $sSet_{Quillen}$ (\hyperlink{Quillen67}{Quillen 67, II.3}) is a [[model category]] structure on the [[category]] [[sSet]] of [[simplicial sets]] which represents the standard classical [[homotopy theory]]. Its [[weak equivalences]] are the [[weak homotopy equivalences]] ([[isomorphisms]] on [[simplicial homotopy groups]]), its [[fibrations]] are the [[Kan fibrations]] and its [[cofibrations]] are the [[monomorphisms]] (degreewise injections). The [[singular simplicial complex]]/[[geometric realization]] [[nerve and realization|adjunction]] constitutes a [[Quillen equivalence]] between $sSet_{Quillen}$ and $Top_{Quillen}$, the [[classical model structure on topological spaces]]. This is sometimes called part of the statement of the \emph{[[homotopy hypothesis]]} \href{homotopy+hypothesis#ForKanComplexes}{for Kan complexes}. In the language of [[(∞,1)-category theory]] this means that $sSet_{Quillen}$ and $Top_{Quillen}$ both are [[presentable (∞,1)-category|presentations]] of the [[(∞,1)-category]] [[∞Grpd]] of [[∞-groupoids]]. There are also other model structures on [[sSet]] itself, see at \emph{[[model structure on simplicial sets]]} for more. This entry here focuses on just the standard classical model structure. \hypertarget{background_on_combinatorial_topology}{}\subsection*{{Background on combinatorial topology}}\label{background_on_combinatorial_topology} This section reviews basics of the theory of [[simplicial sets]] (the modern version of the original ``combinatorial topology'') necessary to define, verify and analyse the classical model category structure on simplicial sets, \hyperlink{TheClassicalModelStructure}{below}. See also at \emph{[[simplicial homotopy theory]]}. \hypertarget{simplicial_sets}{}\subsubsection*{{Simplicial sets}}\label{simplicial_sets} The concept of [[simplicial sets]] is secretly well familiar already in basic [[algebraic topology]]: it reflects just the abstract structure carried by the [[singular simplicial complexes]] of [[topological spaces]], as in the definition of [[singular homology]] and [[singular cohomology]]. Conversely, every simplicial set may be [[geometric realization|geometrically realized]] as a topological space. These two [[adjoint]] operations turn out to exhibit the homotopy theory of simplicial sets as being equivalent ([[Quillen equivalence|Quillen equivalent]]) to the homotopy theory of topological spaces. For some purposes, working in [[simplicial homotopy theory]] is preferable over working with topological homotopy theory. \begin{defn} \label{TopologicalSimplex}\hypertarget{TopologicalSimplex}{} For $n \in \mathbb{N}$, the \textbf{\href{simplex#TopologicalSimplex}{topological n-simplex}} is, up to [[homeomorphism]], the [[topological space]] whose underlying set is the subset \begin{displaymath} \Delta^n \coloneqq \{ \vec x \in \mathbb{R}^{n+1} | \sum_{i = 0 }^n x_i = 1 \; and \; \forall i . x_i \geq 0 \} \subset \mathbb{R}^{n+1} \end{displaymath} of the [[Cartesian space]] $\mathbb{R}^{n+1}$, and whose topology is the [[nLab:subspace topology]] induces from the canonical topology in $\mathbb{R}^{n+1}$. \end{defn} \begin{example} \label{}\hypertarget{}{} For $n = 0$ this is the [[point]], $\Delta^0 = *$. For $n = 1$ this is the standard [[interval object]] $\Delta^1 = [0,1]$. For $n = 2$ this is the filled triangle. For $n = 3$ this is the filled tetrahedron. \end{example} \begin{defn} \label{FaceInclusionInBarycentricCoords}\hypertarget{FaceInclusionInBarycentricCoords}{} For $n \in \mathbb{N}$, $\n \geq 1$ and $0 \leq k \leq n$, the \textbf{$k$th $(n-1)$-face (inclusion)} of the topological $n$-simplex, def. \ref{TopologicalSimplex}, is the subspace inclusion \begin{displaymath} \delta_k : \Delta^{n-1} \hookrightarrow \Delta^n \end{displaymath} induced under the coordinate presentation of def. \ref{TopologicalSimplex}, by the inclusion \begin{displaymath} \mathbb{R}^n \hookrightarrow \mathbb{R}^{n+1} \end{displaymath} which ``omits'' the $k$th canonical coordinate: \begin{displaymath} (x_0, \cdots , x_{n-1}) \mapsto (x_0, \cdots, x_{k-1} , 0 , x_{k}, \cdots, x_n) \,. \end{displaymath} \end{defn} \begin{example} \label{}\hypertarget{}{} The inclusion \begin{displaymath} \delta_0 : \Delta^0 \to \Delta^1 \end{displaymath} is the inclusion \begin{displaymath} \{1\} \hookrightarrow [0,1] \end{displaymath} of the ``right'' end of the standard interval. The other inclusion \begin{displaymath} \delta_1 : \Delta^0 \to \Delta^1 \end{displaymath} is that of the ``left'' end $\{0\} \hookrightarrow [0,1]$. \end{example} (graphics taken from \href{https://ncatlab.org/nlab/show/simplicial+set#Friedman08}{Friedman 08}) \begin{defn} \label{DegeneracyProjectionsInBarycentricCoords}\hypertarget{DegeneracyProjectionsInBarycentricCoords}{} For $n \in \mathbb{N}$ and $0 \leq k \lt n$ the \textbf{$k$th degenerate $(n)$-simplex (projection)} is the surjective map \begin{displaymath} \sigma_k : \Delta^{n} \to \Delta^{n-1} \end{displaymath} induced under the barycentric coordinates of def. \ref{TopologicalSimplex} under the surjection \begin{displaymath} \mathbb{R}^{n+1} \to \mathbb{R}^n \end{displaymath} which sends \begin{displaymath} (x_0, \cdots, x_n) \mapsto (x_0, \cdots, x_{k} + x_{k+1}, \cdots, x_n) \,. \end{displaymath} \end{defn} \begin{defn} \label{SingularSimplex}\hypertarget{SingularSimplex}{} For $X \in$ [[Top]] and $n \in \mathbb{N}$, a \textbf{singular $n$-simplex} in $X$ is a [[continuous map]] \begin{displaymath} \sigma : \Delta^n \to X \end{displaymath} from the topological $n$-simplex, def. \ref{TopologicalSimplex}, to $X$. Write \begin{displaymath} (Sing X)_n \coloneqq Hom_{Top}(\Delta^n , X) \end{displaymath} for the set of singular $n$-simplices of $X$. \end{defn} (graphics taken from \href{https://ncatlab.org/nlab/show/simplicial+set#Friedman08}{Friedman 08}) The sets $(Sing X)_\bullet$ here are closely related by an interlocking system of maps that make them form what is called a \emph{[[simplicial set]]}, and as such the collection of these sets of singular simplices is called the \emph{[[singular simplicial complex]]} of $X$. We discuss the definition of simplicial sets now and then come back to this below in def. \ref{SingularSimplicialComplex}. Since the topological $n$-simplices $\Delta^n$ from def. \ref{TopologicalSimplex} sit inside each other by the face inclusions of def. \ref{FaceInclusionInBarycentricCoords} \begin{displaymath} \delta_k : \Delta^{n-1} \to \Delta^{n} \end{displaymath} and project onto each other by the degeneracy maps, def. \ref{DegeneracyProjectionsInBarycentricCoords} \begin{displaymath} \sigma_k : \Delta^{n+1} \to \Delta^n \end{displaymath} we dually have functions \begin{displaymath} d_k \coloneqq Hom_{Top}(\delta_k, X) : (Sing X)_n \to (Sing X)_{n-1} \end{displaymath} that send each singular $n$-simplex to its $k$-face and functions \begin{displaymath} s_k \coloneqq Hom_{Top}(\sigma_k,X) : (Sing X)_{n} \to (Sing X)_{n+1} \end{displaymath} that regard an $n$-simplex as beign a degenerate (``thin'') $(n+1)$-simplex. All these sets of simplices and face and degeneracy maps between them form the following structure. \begin{defn} \label{SimplicialSet}\hypertarget{SimplicialSet}{} A \textbf{[[simplicial set]]} $S \in sSet$ is \begin{itemize}% \item for each $n \in \mathbb{N}$ a [[set]] $S_n \in Set$ -- the \textbf{set of $n$-[[simplices]]}; \item for each [[injective map]] $\delta_i : \overline{n-1} \to \overline{n}$ of [[nLab:totally ordered sets]] $\bar n \coloneqq \{ 0 \lt 1 \lt \cdots \lt n \}$ a [[function]] $d_i : S_{n} \to S_{n-1}$ -- the $i$th \textbf{face map} on $n$-simplices; \item for each [[surjective map]] $\sigma_i : \overline{n+1} \to \bar n$ of [[totally ordered sets]] a [[function]] $\sigma_i : S_{n} \to S_{n+1}$ -- the $i$th \textbf{degeneracy map} on $n$-simplices; \end{itemize} such that these functions satisfy the \emph{[[simplicial identities]]}. \end{defn} \begin{defn} \label{SimplicialIdentities}\hypertarget{SimplicialIdentities}{} The \textbf{simplicial identities} satisfied by face and degeneracy maps as above are (whenever these maps are composable as indicated): \begin{enumerate}% \item $d_i \circ d_j = d_{j-1} \circ d_i$ if $i \lt j$, \item $s_i \circ s_j = s_j \circ s_{i-1}$ if $i \gt j$. \item $d_i \circ s_j = \left\{ \itexarray{ s_{j-1} \circ d_i & if \; i \lt j \\ id & if \; i = j \; or \; i = j+1 \\ s_j \circ d_{i-1} & if i \gt j+1 } \right.$ \end{enumerate} \end{defn} It is straightforward to check by explicit inspection that the evident injection and restriction maps between the sets of [[singular simplices]] make $(Sing X)_\bullet$ into a simplicial set. However for working with this, it is good to streamline a little: \begin{defn} \label{}\hypertarget{}{} The \textbf{[[simplex category]]} $\Delta$ is the [[full subcategory]] of [[Cat]] on the free categories of the form \begin{displaymath} \begin{aligned} [0] & \coloneqq \{0\} \\ [1] & \coloneqq \{0 \to 1\} \\ [2] & \coloneqq \{0 \to 1 \to 2\} \\ \vdots \end{aligned} \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} This is called the ``simplex category'' because we are to think of the object $[n]$ as being the ``[[spine]]'' of the $n$-[[simplex]]. For instance for $n = 2$ we think of $0 \to 1 \to 2$ as the ``spine'' of the triangle. This becomes clear if we don't just draw the morphisms that \emph{generate} the category $[n]$, but draw also all their composites. For instance for $n = 2$ we have\_ \begin{displaymath} [2] = \left\{ \itexarray{ && 1 \\ & \nearrow && \searrow \\ 0 &&\to&& 2 } \right\} \,. \end{displaymath} \end{remark} \begin{prop} \label{}\hypertarget{}{} A [[functor]] \begin{displaymath} S : \Delta^{op} \to Set \end{displaymath} from the [[opposite category]] of the [[nLab:simplex category]] to the category [[Set]] of sets is canonically identified with a [[simplicial set]], def. \ref{SimplicialSet}. \end{prop} \begin{proof} One checks by inspection that the simplicial identities characterize precisely the behaviour of the morphisms in $\Delta^{op}([n],[n+1])$ and $\Delta^{op}([n],[n-1])$. \end{proof} This makes the following evident: \begin{example} \label{StandardCosimplicialTopologicalSpace}\hypertarget{StandardCosimplicialTopologicalSpace}{} The [[topological simplices]] from def. \ref{TopologicalSimplex} arrange into a \emph{[[cosimplicial object]] in [[Top]]}, namely a [[functor]] \begin{displaymath} \Delta^\bullet : \Delta \to Top \,. \end{displaymath} \end{example} With this now the structure of a simplicial set on $(Sing X)_\bullet$, def. \ref{SingularSimplex}, is manifest: it is just the \emph{[[nerve]]} of $X$ with respect to $\Delta^\bullet$, namely: \begin{defn} \label{SingularSimplicialComplex}\hypertarget{SingularSimplicialComplex}{} For $X$ a [[topological space]] its \textbf{[[singular simplicial complex|simplicial set of singular simplicies]]} (often called the \textbf{[[singular simplicial complex]]}) \begin{displaymath} (Sing X)_\bullet : \Delta^{op} \to Set \end{displaymath} is given by composition of the functor from example \ref{StandardCosimplicialTopologicalSpace} with the [[nLab:hom functor]] of [[nLab:Top]]: \begin{displaymath} (Sing X) : [n] \mapsto Hom_{Top}( \Delta^n , X ) \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} It turns out -- this is the content of the \emph{[[nLab:homotopy hypothesis]]-theorem} (\href{model+structure+on+simplicial+sets#Quillen67}{Quillen 67}) -- that [[homotopy type]] of the topological space $X$ is entirely captured by its singular simplicial complex $Sing X$. Moreover, the [[geometric realization]] of $Sing X$ is a model for the same [[homotopy type]] as that of $X$, but with the special property that it is canonically a [[cell complex]] -- a [[CW-complex]]. Better yet, $Sing X$ is itself already good cell complex, namely a [[Kan complex]]. We come to this below. \end{remark} \hypertarget{simplicial_homotopy}{}\subsubsection*{{Simplicial homotopy}}\label{simplicial_homotopy} The concept of [[homotopy]] of morphisms between simplicial sets proceeds in direct analogy with that in [[topological spaces]]. \begin{defn} \label{LeftHomotopyOfSimplicialSets}\hypertarget{LeftHomotopyOfSimplicialSets}{} For $X$ a [[simplicial set]], def. \ref{SimplicialSet}, its \emph{simplicial [[cylinder object]]} is the [[Cartesian product]] $X\times \Delta[1]$ (formed in the [[category]] [[sSet]]). A \emph{[[left homotopy]]} \begin{displaymath} \eta \;\colon\; f \Rightarrow g \end{displaymath} between two morphisms \begin{displaymath} f,g\;\colon\; X \longrightarrow Y \end{displaymath} of [[simplicial sets]] is a morphism \begin{displaymath} \eta \;\colon\; X \times \Delta[1] \longrightarrow Y \end{displaymath} such that the following [[commuting diagram|diagram commutes]] \begin{displaymath} \itexarray{ X \\ {}^{\mathllap{(id_X,d_1)}}\downarrow & \searrow^{\mathllap{f}} \\ X \times \Delta^1 &\stackrel{\eta}{\longrightarrow}& Y \\ {}^{\mathllap{(id_x, d_0)}}\uparrow & \nearrow_{\mathllap{g}} \\ X } \,. \end{displaymath} For $Y$ a [[Kan complex]], def. \ref{SimplicialSet}, its \emph{simplicial [[path space object]]} is the [[function complex]] $X^{\Delta[1]}$ (formed in the [[category]] [[sSet]]). A \emph{[[right homotopy]]} \begin{displaymath} \eta \;\colon\; f \Rightarrow g \end{displaymath} between two morphisms \begin{displaymath} f,g\;\colon\; X \longrightarrow Y \end{displaymath} of [[simplicial sets]] is a morphism \begin{displaymath} \eta \colon X \longrightarrow Y^{\Delta[1]} \end{displaymath} such that the following [[commuting diagram|diagram commutes]] \begin{displaymath} \itexarray{ && Y \\ & {}^{\mathllap{f}}\nearrow & \uparrow^{\mathrlap{Y^{d_1}}} \\ X &\stackrel{\eta}{\longrightarrow}& Y^{\Delta[1]} \\ & {}_{\mathllap{g}}\searrow & \downarrow^{\mathrlap{Y^{d_0}}} \\ && Y } \,. \end{displaymath} \end{defn} \begin{prop} \label{LeftHomotopyIsEquivalence}\hypertarget{LeftHomotopyIsEquivalence}{} For $Y$ a [[Kan complex]], def. \ref{KanComplexes}, and $X$ any [[simplicial set]], then left homotopy, def. \ref{LeftHomotopyOfSimplicialSets}, regarded as a [[relation]] \begin{displaymath} (f\sim g) \Leftrightarrow (f \stackrel{\exists}{\Rightarrow} g) \end{displaymath} on the [[hom set]] $Hom_{sSet}(X,Y)$, is an [[equivalence relation]]. \end{prop} \begin{defn} \label{HomotopyEquivalence}\hypertarget{HomotopyEquivalence}{} A morphism $f \colon X \longrightarrow Y$ of [[simplicial sets]] is a left/right [[homotopy equivalence]] if there exists a morphisms $X \longleftarrow Y \colon g$ and left/right homotopies (def. \ref{LeftHomotopyOfSimplicialSets}) \begin{displaymath} g \circ f \Rightarrow id_X\,,\;\;\;\; f\circ g \Rightarrow id_Y \end{displaymath} \end{defn} The the basic invariants of [[simplicial sets]]/[[Kan complexes]] in [[simplicial homotopy theory]] are their [[simplicial homotopy groups]], to which we turn now. Given that a [[Kan complex]] is a special [[simplicial set]] that [[homotopy hypothesis|behaves like]] a combinatorial model for a [[topological space]], the \emph{simplicial homotopy groups} of a Kan complex are accordingly the combinatorial analog of the [[homotopy groups]] of [[topological spaces]]: instead of being maps from topological [[spheres]] modulo maps from topological disks, they are maps from the [[boundary of a simplex]] modulo those from the [[simplex]] itself. Accordingly, the definition of the discussion of simplicial homotopy groups is essentially literally the same as that of [[homotopy groups]] of topological spaces. One technical difference is for instance that the definition of the group structure is slightly more non-immediate for simplicial homotopy groups than for topological homotopy groups (see below). \begin{defn} \label{UnderlyingSetsOfSimplicialHomotopyGroups}\hypertarget{UnderlyingSetsOfSimplicialHomotopyGroups}{} For $X$ a [[Kan complex]], then its \textbf{0th [[simplicial homotopy group]]} (or \textbf{set of [[connected components]]}) is the set of [[equivalence classes]] of vertices modulo the [[equivalence relation]] $X_1 \stackrel{(d_1,d_0)}{\longrightarrow} X_0 \times X_0$ \begin{displaymath} \pi_0(X) \colon X_0/X_1 \,. \end{displaymath} For $x \in X_0$ a vertex and for $n \in \mathbb{N}$, $n \geq 1$, then the underlying [[set]] of the \textbf{$n$th [[simplicial homotopy group]]} of $X$ at $x$ -- denoted $\pi_n(X,x)$ -- is, the set of [[equivalence classes]] $[\alpha]$ of morphisms \begin{displaymath} \alpha \colon \Delta^n \to X \end{displaymath} from the simplicial $n$-[[simplex]] $\Delta^n$ to $X$, such that these take the [[boundary of a simplex|boundary of the simplex]] to $x$, i.e. such that they fit into a [[commuting diagram]] in [[sSet]] of the form \begin{displaymath} \itexarray{ \partial \Delta[n] & \longrightarrow & \Delta[0] \\ \downarrow && \downarrow^{\mathrlap{x}} \\ \Delta[n] &\stackrel{\alpha}{\longrightarrow}& X } \,, \end{displaymath} where two such maps $\alpha, \alpha'$ are taken to be equivalent is they are related by a [[simplicial homotopy]] $\eta$ \begin{displaymath} \itexarray{ \Delta[n] \\ \downarrow^{i_0} & \searrow^{\alpha} \\ \Delta[n] \times \Delta[1] &\stackrel{\eta}{\longrightarrow}& X \\ \uparrow^{i_1} & \nearrow_{\alpha'} \\ \Delta[n] } \end{displaymath} that fixes the boundary in that it fits into a [[commuting diagram]] in [[sSet]] of the form \begin{displaymath} \itexarray{ \partial \Delta[n] \times \Delta[1] & \longrightarrow & \Delta[0] \\ \downarrow && \downarrow^{\mathrlap{x}} \\ \Delta[n] \times \Delta[1] &\stackrel{\eta}{\longrightarrow}& X } \,. \end{displaymath} \end{defn} These sets are taken to be equipped with the following group structure. \begin{defn} \label{ProductOnSimplicialHomotopyGroups}\hypertarget{ProductOnSimplicialHomotopyGroups}{} For $X$ a [[Kan complex]], for $x\in X_0$, for $n \geq 1$ and for $f,g \colon \Delta[n] \to X$ two representatives of $\pi_n(X,x)$ as in def. \ref{UnderlyingSetsOfSimplicialHomotopyGroups}, consider the following $n$-simplices in $X_n$: \begin{displaymath} v_i \coloneqq \left\{ \itexarray{ s_0 \circ s_0 \circ \cdots \circ s_0 (x) & for \; 0 \leq i \leq n-2 \\ f & for \; i = n-1 \\ g & for \; i = n+1 } \right. \end{displaymath} This corresponds to a morphism $\Lambda^{n+1}[n] \to X$ from a [[horn]] of the $(n+1)$-[[simplex]] into $X$. By the [[Kan complex]] property of $X$ this morphism has an [[extension]] $\theta$ through the $(n+1)$-[[simplex]] $\Delta[n]$ \begin{displaymath} \itexarray{ \Lambda^{n+1}[n] & \longrightarrow & X \\ \downarrow & \nearrow_{\mathrlap{\theta}} \\ \Delta[n+1] } \end{displaymath} From the [[simplicial identities]] one finds that the boundary of the $n$-simplex arising as the $n$th boundary piece $d_n \theta$ of $\theta$ is constant on $x$ \begin{displaymath} d_i d_{n} \theta = d_{n-1} d_i \theta = x \end{displaymath} So $d_n \theta$ represents an element in $\pi_n(X,x)$ and we define a product operation on $\pi_n(X,x)$ by \begin{displaymath} [f]\cdot [g] \coloneqq [d_n \theta] \,. \end{displaymath} \end{defn} (e.g. \hyperlink{GoerssJardine99}{Goerss-Jardine 99, p. 26}) \begin{remark} \label{}\hypertarget{}{} All the degenerate $n$-simplices $v_{0 \leq i \leq n-2}$ in def. \ref{ProductOnSimplicialHomotopyGroups} are just there so that the gluing of the two $n$-cells $f$ and $g$ to each other can be regarded as forming the boundary of an $(n+1)$-simplex except for one face. By the Kan extension property that missing face exists, namely $d_n \theta$. This is a choice of gluing composite of $f$ with $g$. \end{remark} \begin{lemma} \label{}\hypertarget{}{} The product on homotopy group elements in def. \ref{ProductOnSimplicialHomotopyGroups} is well defined, in that it is independent of the choice of representatives $f$, $g$ and of the extension $\theta$. \end{lemma} e.g. (\hyperlink{GoerssJardine99}{Goerss-Jardine 99, lemma 7.1}) \begin{lemma} \label{}\hypertarget{}{} The product operation in def. \ref{ProductOnSimplicialHomotopyGroups} yields a [[group]] structure on $\pi_n(X,x)$, which is [[abelian group|abelian]] for $n \geq 2$. \end{lemma} e.g. (\hyperlink{GoerssJardine99}{Goerss-Jardine 99, theorem 7.2}) \begin{remark} \label{}\hypertarget{}{} The first homotopy group, $\pi_1(X,x)$, is also called the \emph{[[fundamental group]]} of $X$. \end{remark} \begin{defn} \label{WeakHomotopyEquivalence}\hypertarget{WeakHomotopyEquivalence}{} For $X,Y \in KanCplx \hookrightarrow sSet$ two [[Kan complexes]], then a morphism \begin{displaymath} f \colon X \longrightarrow Y \end{displaymath} is called a \textbf{[[weak homotopy equivalence]]} if it induces [[isomorphisms]] on all [[simplicial homotopy groups]], i.e. if \begin{enumerate}% \item $\pi_0(f) \colon \pi_0(X) \longrightarrow \pi_0(Y)$ is a [[bijection]] of sets; \item $\pi_n(f,x) \colon \pi_n(X,x) \longrightarrow \pi_n(Y,f(x))$ is an [[isomorphism]] of [[groups]] for all $x\in X_0$ and all $n \in \mathbb{N}$; $n \geq 1$. \end{enumerate} \end{defn} \hypertarget{kan_fibrations}{}\subsubsection*{{Kan fibrations}}\label{kan_fibrations} \begin{defn} \label{Horn}\hypertarget{Horn}{} For each $i$, $0 \leq i \leq n$, the \textbf{$(n,i)$-horn} is the subsimplicial set \begin{displaymath} \Lambda^i[n] \hookrightarrow \Delta[n] \end{displaymath} of the simplicial $n$-[[simplex]], which is the [[union]] of all faces \emph{except} the $i^{th}$ one. This is called an \textbf{outer horn} if $k = 0$ or $k = n$. Otherwise it is an \textbf{inner horn}. \end{defn} (graphics taken from \href{https://ncatlab.org/nlab/show/simplicial+set#Friedman08}{Friedman 08}) \begin{remark} \label{}\hypertarget{}{} Since [[sSet]] is a [[presheaf category]], [[unions]] of [[subobjects]] make sense and they are calculated objectwise, thus in this case dimensionwise. This way it becomes clear what the structure of a horn as a functor $\Lambda^k[n]: \Delta^{op} \to Set$ must therefore be: it takes $[m]$ to the collection of ordinal maps $f: [m] \to [n]$ which do not have the element $k$ in the image. \end{remark} \begin{defn} \label{KanComplexes}\hypertarget{KanComplexes}{} A \emph{[[Kan complex]]} is a [[simplicial set]] $S$ that satisfies the \emph{Kan condition}, \begin{itemize}% \item which says that all [[horns]] of the simplicial set have \emph{fillers}/extend to [[simplices]]; \item which means equivalently that the unique homomorphism $S \to pt$ from $S$ to the [[point]] (the [[terminal object|terminal]] [[simplicial set]]) is a [[Kan fibration]]; \item which means equivalently that for all [[diagrams]] of the form \begin{displaymath} \itexarray{ \Lambda^i[n] &\to& S \\ \downarrow && \downarrow \\ \Delta[n] &\to& pt } \;\;\; \leftrightarrow \;\;\; \itexarray{ \Lambda^i[n] &\to& S \\ \downarrow && \\ \Delta[n] } \end{displaymath} there exists a diagonal morphism \begin{displaymath} \itexarray{ \Lambda^i[n] &\to& S \\ \downarrow &\nearrow& \downarrow \\ \Delta[n] &\to& pt } \;\;\; \leftrightarrow \;\;\; \itexarray{ \Lambda^i[n] &\to& S \\ \downarrow &\nearrow& \\ \Delta[n] } \end{displaymath} completing this to a [[commuting diagram]]; \item which in turn means equivalently that the map from $n$-simplices to $(n,i)$-horns is an [[epimorphism]] \begin{displaymath} [\Delta[n], S]\, \twoheadrightarrow \,[\Lambda^i[n],S] \,. \end{displaymath} \end{itemize} \end{defn} \begin{prop} \label{}\hypertarget{}{} For $X$ a [[topological space]], its [[singular simplicial complex]] $Sing(X)$, def. \ref{SingularSimplicialComplex}, is a Kan complex, def. \ref{KanComplexes}. \end{prop} \begin{proof} The inclusions ${{\Lambda^n}_{Top}}_k \hookrightarrow \Delta^n_{Top}$ of topological horns into topological simplices are [[retracts]], in that there are [[continuous maps]] $\Delta^n_{Top} \to {{\Lambda^n}_{Top}}_k$ given by ``squashing'' a topological $n$-simplex onto parts of its boundary, such that \begin{displaymath} ({{\Lambda^n}_{Top}}_k \to \Delta^n_{Top} \to {{\Lambda^n}_{Top}}_k) = Id \,. \end{displaymath} Therefore the map $[\Delta^n, \Pi(X)] \to [\Lambda^n_k,\Pi(X)]$ is an epimorphism, since it is equal to to $Top(\Delta^n, X) \to Top(\Lambda^n_k, X)$ which has a right inverse $Top(\Lambda^n_k, X) \to Top(\Delta^n, X)$. \end{proof} More generally: \begin{defn} \label{KanFibration}\hypertarget{KanFibration}{} A morphism $\phi \colon S \longrightarrow T$ in [[sSet]] is called a \emph{[[Kan fibration]]} if it has the [[right lifting property]] again all [[horn]] inclusions, def. \ref{Horn}, hence if for every [[commuting diagram]] of the form \begin{displaymath} \itexarray{ \Lambda^i[n] &\longrightarrow& S \\ \downarrow && \downarrow^{\mathrlap{\phi}} \\ \Delta[n] &\longrightarrow& T } \end{displaymath} there exists a lift \begin{displaymath} \itexarray{ \Lambda^i[n] &\longrightarrow& S \\ \downarrow &\nearrow& \downarrow^{\mathrlap{\phi}} \\ \Delta[n] &\longrightarrow& T } \,. \end{displaymath} \end{defn} This is the simplicial incarnation of the concept of [[Serre fibrations]] of topological spaces: \begin{defn} \label{SerreFibration}\hypertarget{SerreFibration}{} A [[continuous function]] $f \colon X \longrightarrow Y$ between [[topological spaces]] is a [[Serre fibration]] if for all [[CW-complexes]] $C$ and for every [[commuting diagram]] in [[Top]] of the form \begin{displaymath} \itexarray{ C &\longrightarrow& X \\ \downarrow && \downarrow^{\mathrlap{f}} \\ C \times I &\longrightarrow& Y } \end{displaymath} there exists a lift \begin{displaymath} \itexarray{ C &\longrightarrow& X \\ \downarrow &\nearrow& \downarrow^{\mathrlap{f}} \\ C \times I &\longrightarrow& Y } \,. \end{displaymath} \end{defn} \begin{prop} \label{SingDetextsAndReflectsFibrations}\hypertarget{SingDetextsAndReflectsFibrations}{} A [[continuous function]] $f \colon X \longrightarrow Y$ is a [[Serre fibration]], def. \ref{SerreFibration}, precisely if $Sing(f) \colon Sing(X) \longrightarrow Sing(Y)$ (def. \ref{SingularSimplicialComplex}) is a [[Kan fibration]], def. \ref{KanFibration}. \end{prop} The proof uses the basic tool of [[nerve and realization]]-[[adjunction]] to which we get to below in prop. \ref{NerveAndRealizationAdjunction}. \begin{proof} First observe that the left [[lifting property]] against all $C \hookrightarrow C \times I$ for $C$ a [[CW-complex]] is equivalent to left lifting against [[geometric realization]] ${\vert \Lambda^i[n]\vert} \hookrightarrow {\vert \Delta[n]\vert}$ of [[horn]] inclusions. Then apply the [[natural isomorphism]] $Top({\vert-\vert},-) \simeq sSet(-,Sing(-))$, given by the [[adjunction]] of prop. \ref{NerveAndRealizationAdjunction} and example \ref{TopologicalRealizationOfSimplicialSets}, to the lifting diagrams. \end{proof} \begin{lemma} \label{PullbackOfKanFibrationSendsLeftHomotopyToFiberwiseHomotopyequivalence}\hypertarget{PullbackOfKanFibrationSendsLeftHomotopyToFiberwiseHomotopyequivalence}{} Let $p \colon X \longrightarrow Y$ be a [[Kan fibration]], def. \ref{KanFibration}, and let $f_1,f_2 \colon A \longrightarrow X$ be two morphisms. If there is a [[left homotopy]] (def. \ref{LeftHomotopyOfSimplicialSets}) $f_1 \Rightarrow f_2$ between these maps, then there is a fiberwise [[homotopy equivalence]], def. \ref{HomotopyEquivalence}, between the [[pullback]] fibrations $f_1^\ast X \simeq f_2^\ast X$. \end{lemma} (e.g. \hyperlink{GoerssJardine99}{Goerss-Jardine 99, chapter I, lemma 10.6}) While [[simplicial sets]] have the advantage of being purely combinatorial structures, the [[singular simplicial complex]] of any given [[topological space]], def. \ref{SingularSimplicialComplex} is in general a huge simplicial set which does not lend itself to detailed inspection. The following is about small models. \begin{defn} \label{MinimalKanFibration}\hypertarget{MinimalKanFibration}{} A [[Kan fibration]] $\phi \colon S \longrightarrow T$, def. \ref{KanFibration}, is called a \textbf{[[minimal Kan fibration]]} if for any two cells in the same fiber with the same [[boundary]] if they are homotopic relative their boundary, then they are already equal. More formally, $\phi$ is minimal precisely if for every [[commuting diagram]] of the form \begin{displaymath} \itexarray{ (\partial \Delta[n]) \times \Delta[1] &\stackrel{p_1}{\longrightarrow}& \partial \Delta[n] \\ \downarrow && \downarrow \\ \Delta[n] \times \Delta[1] &\stackrel{h}{\longrightarrow}& S \\ \downarrow^{\mathrlap{p_1}} && \downarrow^{\mathrlap{\phi}} \\ \Delta[n] &\longrightarrow& T } \end{displaymath} then the two composites \begin{displaymath} \Delta[n] \stackrel{\overset{d_0}{\longrightarrow}}{\underset{d_1}{\longrightarrow}} \Delta[n] \times \Delta[1] \stackrel{h}{\longrightarrow} S \end{displaymath} are equal. \end{defn} \begin{prop} \label{PullbackPreservesMinimalFibration}\hypertarget{PullbackPreservesMinimalFibration}{} The [[pullback]] (in [[sSet]]) of a [[minimal Kan fibration]], def. \ref{MinimalKanFibration}, along any morphism is again a mimimal Kan fibration. \end{prop} \ldots{} [[anodyne extensions]]\ldots{} (\hyperlink{GoerssJardine99}{Goerss-Jardine 99, chapter I, section 4}, \hyperlink{JoyalTierney05}{Joyal-Tierney 05, section 31}) \begin{prop} \label{KanFibrationHasMinimalStrongDeformationRetract}\hypertarget{KanFibrationHasMinimalStrongDeformationRetract}{} For every [[Kan fibration]], def. \ref{KanFibration}, there exists a fiberwise [[strong deformation retract]] to a [[minimal Kan fibration]], def. \ref{MinimalKanFibration}. \end{prop} (e.g. \hyperlink{GoerssJardine99}{Goerss-Jardine 99, chapter I, prop. 10.3}, \hyperlink{JoyalTierney05}{Joyal-Tierney 05, theorem 3.3.1, theorem 3.3.3}). \begin{proof} Choose representatives by [[induction]], use that in the induction step one needs lifts of [[anodyne extensions]] against a [[Kan fibration]], which exist. \end{proof} \begin{lemma} \label{FiberwiseHomotopyEquivalenceOfMinimalFibrationsIsIso}\hypertarget{FiberwiseHomotopyEquivalenceOfMinimalFibrationsIsIso}{} A morphism between [[minimal Kan fibrations]], def. \ref{MinimalKanFibration}, which is fiberwise a [[homotopy equivalence]], def. \ref{HomotopyEquivalence}, is already an [[isomorphism]]. \end{lemma} (e.g. \hyperlink{GoerssJardine99}{Goerss-Jardine 99, chapter I, lemma 10.4}) \begin{proof} Show the statement degreewise. In the [[induction]] one needs to lift [[anodyne extensions]] agains a [[Kan fibration]]. \end{proof} \begin{lemma} \label{MinimalKanFibrationAreFiberBundles}\hypertarget{MinimalKanFibrationAreFiberBundles}{} Every [[minimal Kan fibration]], def. \ref{MinimalKanFibration}, over a [[connected]] base is a simplicial [[fiber bundle]], locally trivial over every simplex of the base. \end{lemma} (e.g. \hyperlink{GoerssJardine99}{Goerss-Jardine 99, chapter I, corollary 10.8}) \begin{proof} By assumption of the base being connected, the classifying maps for the fibers over any two vertices are connected by a [[zig-zag]] of [[homotopies]], hence by lemma \ref{PullbackOfKanFibrationSendsLeftHomotopyToFiberwiseHomotopyequivalence} the fibers are connected by [[homotopy equivalences]] and then by prop. \ref{PullbackPreservesMinimalFibration} and lemma \ref{FiberwiseHomotopyEquivalenceOfMinimalFibrationsIsIso} they are already isomorphic. Write $F$ for this [[typical fiber]]. Moreover, for all $n$ the morphisms $\Delta[n] \to \Delta[0] \to \Delta[n]$ are [[left homotopy|left homotopic]] to $\Delta[n] \stackrel{id}{\to} \Delta[n]$ and so applying lemma \ref{PullbackOfKanFibrationSendsLeftHomotopyToFiberwiseHomotopyequivalence} and prop. \ref{FiberwiseHomotopyEquivalenceOfMinimalFibrationsIsIso} once more yields that the fiber over each $\Delta[n]$ is [[isomorphism|isomorphic]] to $\Delta[n]\times F$. \end{proof} \hypertarget{geometric_realization}{}\subsubsection*{{Geometric realization}}\label{geometric_realization} So far we we have considered passing from [[topological spaces]] to [[simplicial sets]] by applying the [[singular simplicial complex]] functor of def. \ref{SingularSimplicialComplex}. Now we discuss a [[left adjoint]] of this functor, called [[geometric realization]], which turns a simplicial set into a topological space by identifying each of its abstract [[n-simplices]] with the standard topological $n$-simplex. This is an example of a general abstract phenomenon: \begin{prop} \label{NerveAndRealizationAdjunction}\hypertarget{NerveAndRealizationAdjunction}{} Let \begin{displaymath} \delta \;\colon\; D \longrightarrow \mathcal{C} \end{displaymath} be a [[functor]] from a [[small category]] $D$ to a [[locally small category]] $\mathcal{C}$ with all [[colimits]]. Then the [[nerve]]-functor \begin{displaymath} N \;\colon\; \mathcal{C} \longrightarrow [D^{op}, Set] \end{displaymath} \begin{displaymath} N(X) \coloneqq \mathcal{C}(\delta(-),X) \end{displaymath} has a [[left adjoint]] functor ${\vert-\vert}$, called [[geometric realization]], \begin{displaymath} ({\vert-\vert} \dashv N) \;\colon\; \mathcal{C} \stackrel{\overset{{\vert-\vert}}{\longleftarrow}}{\underset{N}{\longrightarrow}} [D^{op}, Set] \end{displaymath} given by the [[coend]] \begin{displaymath} {\vert S\vert} = \int^{d \in D} \delta(d) \cdot S(d) \,. \end{displaymath} \end{prop} (\href{nerve+and+realization#Kan58}{Kan 58}) \begin{proof} By basic propeties of [[ends]] and [[coends]]: \begin{displaymath} \begin{aligned} [D^{op}, Set](S,N(X)) & = \int_{d \in D} Set(S(d), N(X)(d)) \\ & = \int_{d\in D} Set(S(d), \mathcal{C}(\delta(d),X)) \\ & \simeq \int_{d \in D} \mathcal{C}(\delta(d) \cdot S(d), X) \\ & \simeq \mathcal{C}(\int^{d \in D} \delta(d) \cdot S(d), X) \\ & = \mathcal{C}({\vert S\vert}, X) \,. \end{aligned} \end{displaymath} \end{proof} \begin{example} \label{TopologicalRealizationOfSimplicialSets}\hypertarget{TopologicalRealizationOfSimplicialSets}{} The [[singular simplicial complex]] functor $Sing$ of def. \ref{SingularSimplicialComplex} has a [[left adjoint]] [[geometric realization]] functor \begin{displaymath} {\vert-\vert} \colon sSet \longrightarrow Top \end{displaymath} given by the [[coend]] \begin{displaymath} {\vert S \vert} = \int^{[n]\in \Delta} \Delta^n \cdot S_n \,. \end{displaymath} \end{example} Topological geometric realization takes values in particularly nice topological spaces. \begin{defn} \label{TopologicalRealizationOfsSetLandsInCWComplexes}\hypertarget{TopologicalRealizationOfsSetLandsInCWComplexes}{} The topological [[geometric realization]] of [[simplicial sets]] in example \ref{TopologicalRealizationOfSimplicialSets} takes values in [[CW-complexes]]. \end{defn} (e.g. \hyperlink{GoerssJardine99}{Goerss-Jardine 99, chapter I, prop. 2.3}) Thus for a topological space $X$ the [[adjunction counit]] $\epsilon_X \colon {\vert Sing X\vert} \longrightarrow X$ of the [[nerve and realization]]-adjunction is a candidate for a replacement of $X$ by a CW-complex. For this, $\epsilon_X$ should be at least a [[weak homotopy equivalence]], i.e. induce [[isomorphisms]] on all [[homotopy groups]]. Since homotopy groups are built from maps into $X$ out of [[compact topological spaces]] it is plausible that this works if the topology of $X$ is entirely detected by maps out of compact topological spaces into $X$. Topological spaces with this property are called [[compactly generated topological spaces|compactly generated]]. We take \emph{[[compact topological space]]} to imply \emph{[[Hausdorff topological space]]}. \begin{defn} \label{kTop}\hypertarget{kTop}{} A [[subspace]] $U \subset X$ of a [[topological space]] $X$ is called \textbf{compactly open} or \textbf{compactly closed}, respectively, if for every [[continuous function]] $f \colon K \longrightarrow X$ out of a [[compact topological space]] the [[preimage]] $f^{-1}(U) \subset K$ is open or closed, respectively. A topological space $X$ is a \textbf{[[compactly generated topological space]]} if each of its compactly closed subspaces is already closed. Write \begin{displaymath} Top_{cg} \hookrightarrow Top \end{displaymath} for the [[full subcategory]] of [[Top]] on the compactly generated topological spaces. \end{defn} Often the condition is added that a compactly closed topological space be also a [[weakly Hausdorff topological space]]. \begin{example} \label{ExamplesOfCompactlyGeneratedTopologiclSpaces}\hypertarget{ExamplesOfCompactlyGeneratedTopologiclSpaces}{} Examples of [[compactly generated topological spaces]], def. \ref{kTop}, include \begin{itemize}% \item every [[compact space]]; \item every [[locally compact space]]; \item every [[topological manifold]]; \item every [[CW-complex]]; \item every [[first countable space]] \end{itemize} \end{example} \begin{cor} \label{TopologicalRealizationOfSSetLandsInkTop}\hypertarget{TopologicalRealizationOfSSetLandsInkTop}{} The topological [[geometric realization]] functor of [[simplicial sets]] in example \ref{TopologicalRealizationOfSimplicialSets} takes values in [[compactly generated topological spaces]] \begin{displaymath} {\vert - \vert} \;\colon\; sSet \longrightarrow Top_{cg} \end{displaymath} \end{cor} \begin{proof} By example \ref{ExamplesOfCompactlyGeneratedTopologiclSpaces} and prop. \ref{TopologicalRealizationOfsSetLandsInCWComplexes}. \end{proof} \begin{prop} \label{kTopIsCoreflectiveInTop}\hypertarget{kTopIsCoreflectiveInTop}{} The [[subcategory]] $Top_{cg} \hookrightarrow Top$ of def. \ref{kTop} has the following properties \begin{enumerate}% \item It is a [[coreflective subcategory]] \begin{displaymath} Top_{cg} \stackrel{\hookrightarrow}{\underset{k}{\longleftarrow}} Top \,. \end{displaymath} The coreflection $k(X)$ of a topological space is given by adding to the open subsets of $X$ all compactly open subsets, def. \ref{kTop}. \item It has all small [[limits]] and [[colimits]]. The colimits are computed in $Top$, the limits are the image under $k$ of the limits as computed in $Top$. \item It is a [[cartesian closed category]]. The [[cartesian product]] in $Top_{cg}$ is the image under $k$ of the Cartesian product formed in $Top$. \end{enumerate} \end{prop} This is due to (\href{compactly+generated+topological+space#Steenrod67}{Steenrod 67}), expanded on in (\href{compactly+generated+topological+space#Lewis78}{Lewis 78, appendix A}). One says that prop. \ref{kTopIsCoreflectiveInTop} with example \ref{ExamplesOfCompactlyGeneratedTopologiclSpaces} makes $Top_{cg}$ a ``[[convenient category of topological spaces]]''. \begin{prop} \label{Timesk}\hypertarget{Timesk}{} Regarded, via corollary \ref{TopologicalRealizationOfSSetLandsInkTop} as a functor ${\vert - \vert} \colon sSet \to Top_{cg}$, [[geometric realization]] preserves [[finite limits]]. \end{prop} See at \emph{\href{geometric+realization#GeometricRealizationIsLeftExact}{Geometric realization is left exact}}. \begin{proof} The key step in the proof is to use the [[cartesian closed category|cartesian closure]] of $Top_{cg}$ (prop. \ref{kTopIsCoreflectiveInTop}). This gives that the [[Cartesian product]] is a [[left adjoint]] and hence preserves colimits in each variable, so that the [[coend]] in the definition of the geometric realization may be taken out of Cartesian products. \end{proof} \begin{lemma} \label{}\hypertarget{}{} The [[geometric realization]], example \ref{TopologicalRealizationOfSimplicialSets}, of a [[minimal Kan fibration]], def. \ref{MinimalKanFibration} is a [[Serre fibration]], def. \ref{SerreFibration}. \end{lemma} This is due to ([[Calculus of fractions and homotopy theory|Gabriel-Zisman 67]]). See for instance (\hyperlink{GoerssJardine99}{Goerss-Jardine 99, chapter I, corollary 10.8, theorem 10.9}). \begin{proof} By prop. \ref{MinimalKanFibrationAreFiberBundles} minimal Kan fibrations are simplicial [[fiber bundles]], locally trivial over each simplex in the base. By prop. \ref{Timesk} this property translates to their [[geometric realization]] also being a locally trivial [[fiber bundle]] of [[topological spaces]], hence in particular a [[Serre fibration]]. \end{proof} \begin{prop} \label{GeometricRealizationOfKanFibrationIsSerreFibration}\hypertarget{GeometricRealizationOfKanFibrationIsSerreFibration}{} The [[geometric realization]], example \ref{TopologicalRealizationOfSimplicialSets}, of any [[Kan fibration]], def. \ref{KanFibration} is a [[Serre fibration]], def. \ref{SerreFibration}. \end{prop} This is due to (\href{Kan+fibration#Quillen68}{Quillen 68}). See for instance (\hyperlink{GoerssJardine99}{Goerss-Jardine 99, chapter I, theorem 10.10}). \begin{prop} \label{UnitOfSingularNerveAndRealizationIsWEOnKanComplexes}\hypertarget{UnitOfSingularNerveAndRealizationIsWEOnKanComplexes}{} For $S$ a [[Kan complex]], then the [[adjunction unit|unit]] of the [[nerve and realization]]-[[adjunction]] (prop. \ref{NerveAndRealizationAdjunction}, example \ref{TopologicalRealizationOfSimplicialSets}) \begin{displaymath} S \longrightarrow Sing {\vert S \vert} \end{displaymath} is a [[weak homotopy equivalence]], def. \ref{WeakHomotopyEquivalence}. For $X$ any [[topological space]], then the [[adjunction counit]] \begin{displaymath} {\vert Sing X\vert} \longrightarrow X \end{displaymath} is a [[weak homotopy equivalence]] \end{prop} e.g. (\hyperlink{GoerssJardine99}{Goerss-Jardine 99, chapter I, prop. 11.1 and p. 63}). \begin{proof} Use prop. \ref{SingDetextsAndReflectsFibrations} and prop. \ref{GeometricRealizationOfKanFibrationIsSerreFibration} applied to the [[path fibration]] to proceed by [[induction]]. \end{proof} \hypertarget{TheClassicalModelStructure}{}\subsection*{{The classical model structure $sSet_{Quillen}$}}\label{TheClassicalModelStructure} \begin{defn} \label{ClassesOfMorphismsOnsSetQuillen}\hypertarget{ClassesOfMorphismsOnsSetQuillen}{} The classical model structure on [[simplicial sets]], $sSet_{Quillen}$, has the following distinguished classes of morphisms: \begin{itemize}% \item The classical \textbf{weak equivalences} $W$ are the morphisms whose [[geometric realization]], example \ref{TopologicalRealizationOfSimplicialSets}, is a [[weak homotopy equivalence]] of [[topological spaces]]; \item The classical \textbf{fibrations} $F$ are the \textbf{[[Kan fibrations]]}, def. \ref{KanFibration}; \item The classical \textbf{cofibrations} $C$ are the [[monomorphisms]] of simplicial sets, i.e. the degreewise [[injections]]. \end{itemize} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{basic_properties}{}\subsubsection*{{Basic properties}}\label{basic_properties} \begin{prop} \label{}\hypertarget{}{} In model structure $sSet_{Quillen}$, def. \ref{ClassesOfMorphismsOnsSetQuillen}, the following holds. \begin{itemize}% \item The fibrant objects are precisely the [[Kan complexes]]. \item A morphism $f : X \to Y$ of fibrant simplicial sets / [[Kan complexes]] is a weak equivalence precisely if it induces an [[isomorphism]] on all [[simplicial homotopy groups]], def. \ref{UnderlyingSetsOfSimplicialHomotopyGroups}. \item All simplicial sets are cofibrant with respect to this model structure. \end{itemize} \end{prop} \begin{prop} \label{}\hypertarget{}{} The \textbf{acyclic fibrations} in $sSet_{Quillen}$(i.e. the maps that are both fibrations as well as weak equivalences) between [[Kan complexes]] are precisely the morphisms $f : X \to Y$ that have the [[right lifting property]] with respect to all inclusions $\partial \Delta[n] \hookrightarrow \Delta[n]$ of boundaries of $n$-simplices into their $n$-simplices \begin{displaymath} \itexarray{ \partial \Delta[n] &\to& X \\ \downarrow &{}^\exists\nearrow& \downarrow^f \\ \Delta[n] &\to& Y } \,. \end{displaymath} \end{prop} This appears spelled out for instance as (\hyperlink{GoerssJardine99}{Goerss-Jardine 99, theorem 11.2}). In fact: \begin{prop} \label{}\hypertarget{}{} $sSet_{Quillen}$ is a [[cofibrantly generated model category]] with \begin{itemize}% \item generating cofibrations the [[boundary]] inclusions $\partial \Delta[n] \to \Delta[n]$; \item generating acyclic cofibrations the [[horn]] inclusions $\Lambda^i[n] \to \Delta[n]$. \end{itemize} \end{prop} \begin{theorem} \label{}\hypertarget{}{} Let $W$ be the smallest class of morphisms in $sSet$ satisfying the following conditions: \begin{enumerate}% \item The class of monomorphisms that are in $W$ is closed under [[pushout]], [[transfinite composition]], and [[retracts]]. \item $W$ has the [[two-out-of-three]] property in $sSet$ and contains all the [[isomorphisms]]. \item For all natural numbers $n$, the unique morphism $\Delta [n] \to \Delta [0]$ is in $W$. \end{enumerate} Then $W$ is the class of weak homotopy equivalences. \end{theorem} \begin{proof} \begin{itemize}% \item First, notice that the horn inclusions $\Lambda^0 [1] \hookrightarrow \Delta [1]$ and $\Lambda^1 [1] \hookrightarrow \Delta [1]$ are in $W$. \item Suppose that the horn inclusion $\Lambda^k [m] \hookrightarrow \Delta [m]$ is in $W$ for all $m \lt n$ and all $0 \le k \le m$. Then for $0 \le l \le n$, the horn inclusion $\Lambda^l [n] \hookrightarrow \Delta [n]$ is also in $W$. \item Quillen's [[small object argument]] then implies all the trivial cofibrations are in $W$. \item If $p : X \to Y$ is a trivial Kan fibration, then its right lifting property implies there is a morphism $s : Y \to X$ such that $p \circ s = id_Y$, and the two-out-of-three property implies $s : Y \to X$ is a trivial cofibration. Thus every trivial Kan fibration is also in $W$. \item Every weak homotopy equivalence factors as $p \circ i$ where $p$ is a trivial Kan fibration and $i$ is a trivial cofibration, so every weak homotopy equivalence is indeed in $W$. \item Finally, noting that the class of weak homotopy equivalences satisfies the conditions in the theorem, we deduce that it is the \emph{smallest} such class. \end{itemize} \end{proof} As a corollary, we deduce that the classical model structure on $sSet$ is the smallest (in terms of weak equivalences) model structure for which the cofibrations are the monomorphisms and the weak equivalences include the (combinatorial) homotopy equivalences. \begin{prop} \label{}\hypertarget{}{} Let $\pi_0 : sSet \to Set$ be the connected components functor, i.e. the left adjoint of the constant functor $cst : Set \to sSet$. A morphism $f : Z \to W$ in $sSet$ is a weak homotopy equivalence if and only if the induced map \begin{displaymath} \pi_0 K^f : \pi_0 K^W \to \pi_0 K^Z \end{displaymath} is a bijection for all \emph{Kan complexes} $K$. \end{prop} \begin{proof} One direction is easy: if $K$ is a Kan complex, then axiom SM7 for [[simplicial model categories]] implies the functor $K^{(-)} : sSet^{op} \to sSet$ is a right [[Quillen functor]], so Ken Brown's lemma implies it preserves all weak homotopy equivalences; in particular, $\pi_0 K^{(-)} : sSet^{op} \to Set$ sends weak homotopy equivalences to bijections. Conversely, when $K$ is a Kan complex, there is a natural bijection between $\pi_0 K^X$ and the hom-set $Ho (sSet) (X, K)$, and thus by the [[Yoneda lemma]], a morphism $f : Z \to W$ such that the induced morphism $\pi_0 K^W \to \pi_0 K^Z$ is a bijection for all Kan complexes $K$ is precisely a morphism that becomes an isomorphism in $Ho (sSet)$, i.e. a weak homotopy equivalence. \end{proof} \hypertarget{Properness}{}\subsubsection*{{Properness}}\label{Properness} The Quillen model structure is both left and right [[proper model category|proper]]. Left properness is automatic since all objects are cofibrant. Right properness follows from the following argument: it suffices to show that there is a functor $R$ which (1) preserves fibrations, (2) preserves pullbacks of fibrations, (3) preserves and reflects weak equivalences, and (4) lands in a category in which the pullback of a weak equivalence along a fibration is a weak equivalence. For if so, we can apply $R$ to the pullback of a fibration along a weak equivalence to get another such pullback in the codomain of $R$, which is a weak equivalence, and hence the original pullback was also a weak equivalence. Two such functors $R$ are \begin{itemize}% \item geometric realization $sSet \to Top$, where $Top$ denotes a sufficiently [[convenient category of topological spaces]] (e.g. the category of [[k-spaces]] suffices) and \item $Ex^\infty : sSet \to Kan$, where $Kan$ is the category of [[Kan complexes]]. \end{itemize} This may be found, for instance, in II.8.6--7 of \href{model+structure+on+simplicial+sets#GoerssJardine}{Goerss-Jardine}. Another proof may be found in \href{model+structure+on+simplicial+sets#Moss}{Moss}, and a different proof of properness may be found in \href{model+structure+on+simplicial+sets#Cisinski06}{Cisinski, Prop. 2.1.5}. \hypertarget{quillen_equivalence_with_}{}\subsubsection*{{Quillen equivalence with $Top_{Quillen}$}}\label{quillen_equivalence_with_} \begin{theorem} \label{}\hypertarget{}{} The [[singular simplicial complex]]/[[geometric realization]]-[[nerve and realization|adjunction]] of example \ref{TopologicalRealizationOfSimplicialSets} constitutes a [[Quillen equivalence]] of the classical model structure $sSet_{Quillen}$ of def. \ref{ClassesOfMorphismsOnsSetQuillen} with the [[classical model structure on topological spaces]]: \begin{displaymath} ({\vert -\vert}\dashv Sing) : Top_{Quillen} \stackrel{\overset{{\vert -\vert}}{\leftarrow}}{\underset{Sing}{\to}} sSet_{Quillen} \end{displaymath} \end{theorem} \begin{proof} First of all, the adjunction is indeed a [[Quillen adjunction]]: prop. \ref{SingDetextsAndReflectsFibrations} says in particular that $Sing(-)$ takes [[Serre fibrations]] to [[Kan fibrations]] and prop. \ref{TopologicalRealizationOfsSetLandsInCWComplexes} gives that ${\vert-\vert}$ sends monomorphisms of simplicial sets to [[relative cell complexes]]. Now prop. \ref{UnitOfSingularNerveAndRealizationIsWEOnKanComplexes} says that the derived adjunction unit and counit are weak equivalences, and hence the Quillen adjunction is a Quillen equivalence. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[model structure on simplicial sets]] \item [[constructive model structure on simplicial sets]] \item [[model structure on reduced simplicial sets]] \item [[classical model structure on topological spaces]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original article is \begin{itemize}% \item [[Dan Quillen]], chapter II, section 3 of \emph{Homotopical algebra}, Lecture Notes in Mathematics \textbf{43}, Springer-Verlag 1967, iv+156 pp. \end{itemize} The proof there is purely combinatorial (i.e. does not use topological spaces): he uses the theory of [[minimal Kan fibrations]], the fact that the latter are fiber bundles, as well as the fact that the [[classifying space]] of a [[simplicial group]] is a [[Kan complex]]. This proof has been rewritten several times in the literature: at the end of \begin{itemize}% \item [[Israel Gelfand]], [[Yuri Manin]], \emph{Methods of Homological Algebra}, Springer, 1996 \item [[André Joyal]], [[Myles Tierney]] \emph{An introduction to simplicial homotopy theory}, 2005 (\href{http://hopf.math.purdue.edu/cgi-bin/generate?/Joyal-Tierney/JT-chap-01}{web}) \end{itemize} A proof (in fact two variants of it) using the [[Kan fibrant replacement]] $Ex^\infty$ functor is given \begin{itemize}% \item [[Denis-Charles Cisinski]], section 2 of \emph{[[joyalscatlab:Les préfaisceaux comme type d'homotopie]]}, Ast\'e{}risque, Volume 308, Soc. Math. France (2006), 392 pages (\href{http://www.math.univ-toulouse.fr/~dcisinsk/ast.pdf}{pdf}) \end{itemize} which discusses the topic as a special case of a \emph{[[Cisinski model structure]]}. The fun part is not that much about the existence of model structure, but to prove that the fibrations are precisely the [[Kan fibrations]] (and also to prove all the good properties of $Ex^\infty$ without using topological spaces); for two different proofs of this fact using $Ex^\infty$, see Prop. 2.1.41 as well as Scholium 2.3.21 for an alternative). For the rest, everything was already in the book of [[Gabriel and Zisman]], for instance. Another approach also using $Ex^\infty$ is in \begin{itemize}% \item Sean Moss, \emph{Another approach to the Kan-Quillen model structure}, \href{http://arxiv.org/abs/1506.04887}{arXiv}. \end{itemize} A standard textbook references for the classical model structure is \begin{itemize}% \item [[Paul Goerss]], [[Rick Jardine]], chapter 1 of \emph{[[Simplicial homotopy theory]]}, Birkh\"a{}user 1999, 2009 (\href{http://www.maths.abdn.ac.uk/~bensondj/html/archive/goerss-jardine.html}{ps}). \end{itemize} A proof of the model structure not relying on the [[classical model structure on topological spaces]] nor on explicit models for [[Kan fibrant replacement]] is givn in \begin{itemize}% \item [[Christian Sattler]], \emph{The Equivalence Extension Property and Model Structures} (\href{https://arxiv.org/abs/1704.06911}{arXiv:1704.06911}) \end{itemize} [[!redirects Quillen model structure on simplicial sets]] [[!redirects Kan-Quillen model structure on simplicial sets]] [[!redirects Kan-Quillen model structure]] [[!redirects classical model category of simplicial sets]] \end{document}