\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{classical triangulation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{classical_triangulations}{Classical Triangulations}\dotfill \pageref*{classical_triangulations} \linebreak \noindent\hyperlink{aim}{Aim}\dotfill \pageref*{aim} \linebreak \noindent\hyperlink{triangulations__lancienne}{Triangulations \`a{} l'ancienne}\dotfill \pageref*{triangulations__lancienne} \linebreak \noindent\hyperlink{classical_subdivision}{Classical subdivision}\dotfill \pageref*{classical_subdivision} \linebreak \noindent\hyperlink{properties_of_classical_subdivisions}{Properties of Classical Subdivisions}\dotfill \pageref*{properties_of_classical_subdivisions} \linebreak \noindent\hyperlink{barycentric_subdivision_classical_geometric_forms}{Barycentric subdivision (classical geometric forms)}\dotfill \pageref*{barycentric_subdivision_classical_geometric_forms} \linebreak \noindent\hyperlink{triangulations_and_covers}{Triangulations and Covers}\dotfill \pageref*{triangulations_and_covers} \linebreak \hypertarget{classical_triangulations}{}\subsection*{{Classical Triangulations}}\label{classical_triangulations} \hypertarget{aim}{}\subsubsection*{{Aim}}\label{aim} The aim of this entry is to describe some of the classical versions of important concepts which are needed elsewhere. This may serve as an entry point for someone versed in a more classical version of algebraic topology, or being adept at the nPOV, and its ramifications, needs to bridge the gap to more classical ideas to understand some more classically written source. (It may also be useful if some classically written source is not at hand when you need it!) The exposition will be fairly `classical' with asides to explain the significance for later developments and for connections to the nPOV. \hypertarget{triangulations__lancienne}{}\subsection*{{Triangulations \`a{} l'ancienne}}\label{triangulations__lancienne} Let $X$ be a [[polyhedron]] (in the sense of polyhedral space), i.e. a space homeomorphic to the [[geometric realisation]] of a [[simplicial complex]]. \begin{udefn} A \textbf{classical triangulation} of $X$ is a pair $(K,f)$, where $K$ is a simplicial complex and $f : |K|\to X$ is a homeomorphism. \end{udefn} (In this context we will often drop the term `classical' referring to `triangulation' if there is little risk of confusion.) \hypertarget{classical_subdivision}{}\subsection*{{Classical subdivision}}\label{classical_subdivision} The older form of [[subdivision]] involved the geometric realisation in the following way: \begin{udefn} If $K$ is a simplicial complex, a \textbf{(classical) subdivision} of $K$ is a simplicial complex, $K^\prime$, such that a) the vertices of $K^\prime$ are (identified with) points of $|K|$; b) if $s^\prime$ is a simplex of $K^\prime$ there is a simplex, $s$ of $K$ such that $s^\prime \subset |s|$; and c) the mapping from $|K^\prime|$ to $|K|$, that extends the mapping of vertices of $K^\prime$ to the corresponding points of $|K|$, is a homeomorphism. \end{udefn} The interpretation, in [[simplicial complex]], of the points of $|K|$ as convex combinations of the vertices, allows an interpretation to be ascribed to $K^\prime$. The general question of the meaning of `refinements' that will be examined later may need a deeper examination of this subdivision process as it is a simple case of such a refinement. \hypertarget{properties_of_classical_subdivisions}{}\subsubsection*{{Properties of Classical Subdivisions}}\label{properties_of_classical_subdivisions} \begin{itemize}% \item Any subdivision of a subdivision of $K$ is a subdivision of $K$. \item If $K'$ and $K''$ are subdivisions of $K$ then there is a subdivision $K'''$ of $K$ that is a subdivision of both $K'$ and $K''$. \end{itemize} These statements thus assert that the subdivisions of a simplicial complex $K$ form a directed set with respect to the partial ordering defined by the relation of subdivision. (We will return to this later in this entry.) Given any simplex, $s\in K$ (or put more pedantically $s \in S(K)$), and using the [[simplicial complex|Canonical Construction]] of $|K|$, we can assign an \emph{open simplex}, $\langle s \rangle$, to $s$. We first recall, from [[simplicial complex]], that $|K|$ is constructed as follows: $|K|$ is the set of all functions from $V(K)$ to the closed interval $[0,1]$ such that \begin{itemize}% \item if $\alpha \in |K|$, the set \end{itemize} \begin{displaymath} \{v \in V(K) \mid \alpha(v) \neq 0\} \end{displaymath} is a simplex of $K$; \begin{itemize}% \item for each $v\in V(K)$,\begin{displaymath} \sum_{\alpha \in V(K)} \alpha (v) = 1. \end{displaymath} \end{itemize} (We then give this set a topology (see [[simplicial complex]]).) \begin{udefn} For $s\in K$, the \textbf{open simplex}, $\langle s \rangle\subset |K|$ is defined by \begin{displaymath} \langle s \rangle = \{ \alpha \in |K| \mid \alpha(v) \neq 0 \Leftrightarrow v\in s\}. \end{displaymath} \end{udefn} Beware although a closed simplex will be a closed subset of $|K|$, an open simplex need not be open in $|K|$. However every $\langle s \rangle$ is and open set of $|s|$. (see Spanier, p. 112, for a discussion.) \hypertarget{barycentric_subdivision_classical_geometric_forms}{}\subsection*{{Barycentric subdivision (classical geometric forms)}}\label{barycentric_subdivision_classical_geometric_forms} The barycentric subdivision is one of the best known and most useful natural subdivisions available in general. (Other are also used, for instance, the middle edge or [[ordinal subdivision]].) The barycentric subdivision has the good property that it exists without recourse to the realisation process, although usually introduced via that process. It is in that form that it is discussed in [[subdivision]]. Here we give the `classical' form and go from that towards the other functorial form. \begin{udefn} If $\sigma = \{ v_0, \ldots, v_q\} \in K_q$, the set of $q$-simplices of a simplicial complex, $K$, then its \textbf{barycentre}, $b(\sigma)$, is the point \begin{displaymath} b(\sigma) = \sum_{0\leq i \leq q}\frac{1}{q + 1} v_i \in |K|. \end{displaymath} The \textbf{barycentric subdivision}, $sd K$, of $K$ is the simplicial complex whose vertices are the barycentres of the simplices of $K$ and whose simplices are finite non-empty collections of barycentres of simplices, which are totally ordered by the face relation of $K$, i.e., by inclusion when considered as subsets of $V(K)$. \end{udefn} As $b(\sigma)$ is completely determined by $\sigma$, this can be rephrased as: \begin{udefn} The \textbf{barycentric subdivision}, $sd K$, of $K$ is the simplicial complex specified by \begin{itemize}% \item the vertices of $sd K$ are the simplices of $K$; \item the subset $\{\sigma_0, \ldots \sigma_q\}$ is a simplex of $sd K$ if there is a total order on its elements (which will be assumed to be the given order, as written) such that \end{itemize} \begin{displaymath} \sigma_0\subset \ldots \subset\sigma_q. \end{displaymath} \end{udefn} \hypertarget{triangulations_and_covers}{}\subsection*{{Triangulations and Covers}}\label{triangulations_and_covers} We now need a bit more terminology: \begin{udefn} Given any vertex $v$ of $K$, its \textbf{star} is defined by \begin{displaymath} st( v) = \{ \alpha \in |K| \mid \alpha(v)\neq 0\}. \end{displaymath} \end{udefn} The set, $st(v)$, is open in $|K|$. We have \begin{displaymath} st(v) = \bigcup \{\langle s \rangle\mid v is a vertex of s\}, \end{displaymath} the union of the interiors of those simplices that have $s$ as a vertex. These vertex stars give an [[open cover]], $\mathcal{U}$, of $|K|$ and the following classical result tells us that the nerve $N(\mathcal{U})$ of this covering is $K$ itself (up to isomorphism): \begin{uprop} Let $\mathcal{U} = \{st(v)\mid v \in V(K)\}$. The vertex map $\phi$ from $K$ to $N(\mathcal{U})$ defined by \begin{displaymath} \phi (v) = \langle st(v)\rangle \end{displaymath} is a simplicial isomorphism \begin{displaymath} \phi : K \cong N(\mathcal{U}). \end{displaymath} \end{uprop} category:motivation \end{document}