\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{classifying space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{yoneda_lemma}{}\paragraph*{{Yoneda lemma}}\label{yoneda_lemma} [[!include Yoneda lemma - contents]] \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{for_principal_bundles}{For principal bundles}\dotfill \pageref*{for_principal_bundles} \linebreak \noindent\hyperlink{ForOrthogonalAndUnitaryPrincipalBundles}{For orthogonal and unitary principal bundles}\dotfill \pageref*{ForOrthogonalAndUnitaryPrincipalBundles} \linebreak \noindent\hyperlink{idea_2}{Idea}\dotfill \pageref*{idea_2} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{classification_of_bundles}{Classification of bundles}\dotfill \pageref*{classification_of_bundles} \linebreak \noindent\hyperlink{for_symmetric_principal_bundles}{For symmetric principal bundles}\dotfill \pageref*{for_symmetric_principal_bundles} \linebreak \noindent\hyperlink{for_crossed_complexes}{For crossed complexes}\dotfill \pageref*{for_crossed_complexes} \linebreak \noindent\hyperlink{for_simplicial_groups}{For simplicial groups}\dotfill \pageref*{for_simplicial_groups} \linebreak \noindent\hyperlink{properties_2}{Properties}\dotfill \pageref*{properties_2} \linebreak \noindent\hyperlink{for_classical_lie_groups}{For classical Lie groups}\dotfill \pageref*{for_classical_lie_groups} \linebreak \noindent\hyperlink{cohomology}{Cohomology}\dotfill \pageref*{cohomology} \linebreak \noindent\hyperlink{moduli_spaces}{Moduli spaces}\dotfill \pageref*{moduli_spaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{classifying space} for some sort of data refers to a [[space]] (or a more general object), usually written $\mathcal{B}(data)$, such that maps $X\to \mathcal{B}(data)$ correspond to data over $X$. The classical example is the classifying space $\mathcal{B}G$ of a [[group]] $G$, which has the property that there is a bijection between [[homotopy]] classes of maps $X\to \mathcal{B}G$ and isomorphism classes of $G$-[[bundle|bundles]] over $X$. (In fact, one can jack this up to an equivalence of [[groupoid|groupoids]] or $\infty$-[[infinity-groupoid|groupoids]].) Various improvements of this are possible which classify bundles with extra structure or [[fibration|fibrations]]. Categorically, the corresponding statement is that [[Grothendieck fibrations]] over a [[category]] $X$ correspond to [[pseudofunctors]] $X^{op}\to Cat$. Thus $Cat$ is the ``classifying space for categories.'' Similarly, discrete fibrations over $X$ correspond to [[functors]] $X^{op}\to Set$. To see the connection between the two, consider the case when $X$ is a groupoid and we restrict the fibers of the fibration to be isomorphic to a given set $F$. Then the functor $X^{op}\to Set$ must land in the subcategory of $Set$ consisting of just the [[automorphisms]] of $F$, which is the one-object groupoid corresponding to the [[automorphism group]] $Aut(F)$. If we further restrict the automorphisms appearing to preserve some given structure on $F$, so that they lie in some smaller group $G$, then the ``classifying space'' will be the one-object groupoid corresponding to $G$. Under the [[homotopy hypothesis]], groupoids correspond to [[homotopy 1-types]], and the one-object groupoid of a group $G$ corresponds precisely to the usual topological classifying space $\mathcal{B}G$ (in fact, this is one \emph{construction} of $\mathcal{B}G$). For this reason, $\mathbf{B}G$ is often used to denote that one-object groupoid; see the [[delooping hypothesis]] and the discussion at [[category algebra]]. The phrase ``classifying space'' is also sometimes used for the realization of the nerve of any category, although it is more complicated to say what exactly this space ``classifies.'' (One answer is ``torsors modulo concordance.'') \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{for_principal_bundles}{}\subsubsection*{{For principal bundles}}\label{for_principal_bundles} For $G$ a [[topological group]] there is a classifying space $B G \in$ [[Top]] for topological $G$-[[principal bundle]]s, hence a space such that for $X$ any sufficiently nice topological space there is a [[natural isomorphism]] \begin{displaymath} G Bund(X)_0 \simeq \pi_0 Top(X, B G) \end{displaymath} between the set of [[isomorphism]] classes of $G$-[[principal bundle]]s on $X$ and the set of [[homotopy]]-classes of [[continuous function]]s $X \to B G$. This space may be constructed as follows: write $\mathbf{B}G \in Top^{\Delta^{op}}$ for the [[simplicial topological space]] obtained as the [[nerve]] of the one-object [[topological groupoid]] associated to $G$, the simplicial space given by \begin{displaymath} (\mathbf{B}G)_n = G^{\times n} \end{displaymath} whose face maps are induced by the product operation on $G$ and whose degeneracy maps are induced from the unit map. If $G$ is [[well-pointed simplicial topological group|well-pointed]], then the [[geometric realization of simplicial topological spaces]] of $G$ is a model for the [[homotopy type]] of the classifying space \begin{displaymath} B G \simeq \vert \mathbf{B}G\vert \,. \end{displaymath} For more details on this construction see the section at [[geometric realization of simplicial topological spaces]]. As discussed there, too, this construction generalizes to more general [[simplicial topological group]]s and classifying spaces for their [[principal ∞-bundle]]s. \hypertarget{ForOrthogonalAndUnitaryPrincipalBundles}{}\subsubsection*{{For orthogonal and unitary principal bundles}}\label{ForOrthogonalAndUnitaryPrincipalBundles} \hypertarget{idea_2}{}\paragraph*{{Idea}}\label{idea_2} For $G = O(n)$ the [[orthogonal group]] and $G = U(n)$ the [[unitary group]], there are standard realizations of the corresponding classifying spaces as [[direct limits]] of [[Grassmannian]] spaces. Let $V_n(\mathbb{R}^q)$ be the [[Stiefel manifold]] of [[orthonormal basis|orthonormal]] $n$-frames in the [[Cartesian space]] $\mathbb{R}^q$. Its points are $n$-[[tuples]] of orthonormal [[vectors]] in $\mathbb{R}^q$, and it is topologized as a [[subspace topology|subspace]] of $(\mathbb{R}^q)^n$, or, equivalently, as a subspace of $(S^{q-1})^n$. It is a [[compact space|compact]] [[manifold]]. Let $G_n(\mathbb{R}^q)$ be the [[Grassmannian]] of $n$-planes in $\mathbb{R}^q$. Its points are the n-dimensional subspaces of $\mathbb{R}^q$. Sending an $n$-tuple of orthonormal vectors to the $n$-plane they span gives a surjective function $V_n(\mathbb{R}^q) \to G_n(\mathbb{R}^q)$, and we topologize $G_n(\mathbb{R}^q)$ as a [[quotient topology|quotient]] space of $V_n(\mathbb{R}^q)$. It too is a compact manifold. The standard inclusion of $\mathbb{R}^q$ in $\mathbb{R}^{q+1}$ induces inclusions $V_n(\mathbb{R}^q) \hookrightarrow V_n(\mathbb{R}^{q+1})$ and $G_n(\mathbb{R}^q) \hookrightarrow G_n(\mathbb{R}^{q+1})$. We define $V_n(\mathbb{R}^\infty)$ and $G_n(\mathbb{R}^\infty)$ to be the unions of the $V_n(\mathbb{R}^q)$ and $G_n(\mathbb{R}^q)$, with the topology of the union. Then $G_n(\mathbb{R}^\infty)$ is a model for the classifying space $B O(n)$. \hypertarget{definitions}{}\paragraph*{{Definitions}}\label{definitions} In the following we take [[Top]] to denote [[compactly generated topological spaces]]. For these the [[Cartesian product]] $X \times (-)$ is a [[left adjoint]] and hence preserves [[colimits]]. \begin{defn} \label{StiefelManifold}\hypertarget{StiefelManifold}{} For $n, k \in \mathbb{N}$ and $n \leq k$, then the $n$th \textbf{real [[Stiefel manifold]]} of $\mathbb{R}^k$ is the [[coset]] [[topological space]]. \begin{displaymath} V_n(\mathbb{R}^k) \coloneqq O(k)/O(k-n) \,, \end{displaymath} where the [[action]] of $O(k-n)$ is via its canonical embedding $O(k-n)\hookrightarrow O(k)$. Similarly the $n$th \textbf{complex Stiefel manifold} of $\mathbb{C}^k$ is \begin{displaymath} V_n(\mathbb{C}^k) \coloneqq U(k)/U(k-n) \,, \end{displaymath} here the [[action]] of $U(k-n)$ is via its canonical embedding $U(k-n)\hookrightarrow U(k)$. \end{defn} \begin{defn} \label{RealAndComplexGrassmannian}\hypertarget{RealAndComplexGrassmannian}{} For $n, k \in \mathbb{N}$ and $n \leq k$, then the $n$th \textbf{real [[Grassmannian]]} of $\mathbb{R}^k$ is the [[coset]] [[topological space]]. \begin{displaymath} Gr_n(\mathbb{R}^k) \coloneqq O(k)/(O(n) \times O(k-n)) \,, \end{displaymath} where the [[action]] of the [[product group]] is via its canonical embedding $O(n)\times O(k-n) \hookrightarrow O(n)$ into the [[orthogonal group]]. Similarly the $n$th \textbf{complex [[Grassmannian]]} of $\mathbb{C}^k$ is the [[coset]] [[topological space]]. \begin{displaymath} Gr_n(\mathbb{C}^k) \coloneqq U(k)/(U(n) \times U(k-n)) \,, \end{displaymath} where the [[action]] of the [[product group]] is via its canonical embedding $U(n)\times U(k-n) \hookrightarrow U(n)$ into the [[unitary group]]. \end{defn} \begin{example} \label{RealComplexProjectiveSpaceAsGrassmannian}\hypertarget{RealComplexProjectiveSpaceAsGrassmannian}{} \begin{itemize}% \item $Gr_1(\mathbb{R}^{n+1}) \simeq \mathbb{R}P^n$ is [[real projective space]] of [[dimension]] $n$. \item $Gr_1(\mathbb{C}^{n+1}) \simeq \mathbb{C}P^n$ is [[complex projective space]] of [[dimension]] $n$. \end{itemize} \end{example} \begin{prop} \label{ProjectionFromStiefelManifoldToGrassmannianIsFiberBundle}\hypertarget{ProjectionFromStiefelManifoldToGrassmannianIsFiberBundle}{} For all $n \leq k \in \mathbb{N}$, the canonical [[projection]] from the real [[Stiefel manifold]] (def. \ref{StiefelManifold}) to the [[Grassmannian]] is a $O(n)$-[[principal bundle]] \begin{displaymath} \itexarray{ O(n) &\hookrightarrow& V_n(\mathbb{R}^k) \\ && \downarrow \\ && Gr_n(\mathbb{R}^k) } \end{displaymath} and the projection from the complex Stiefel manifold to the Grassmannian us a $U(n)$-[[principal bundle]]: \begin{displaymath} \itexarray{ U(n) &\hookrightarrow& V_n(\mathbb{C}^k) \\ && \downarrow \\ && Gr_n(\mathbb{C}^k) } \,. \end{displaymath} \end{prop} \begin{proof} By (\href{coset#QuotientProjectionForCompactLieSubgroupIsPrincipal}{this cor.} and \href{coset#ProjectionOfCosetsIsFiberBundleForClosedSubgroupsOfCompactLieGroup}{this prop.}). \end{proof} \begin{defn} \label{EOn}\hypertarget{EOn}{} By def. \ref{RealAndComplexGrassmannian} there are canonical inclusions \begin{displaymath} Gr_n(\mathbb{R}^k) \hookrightarrow Gr_n(\mathbb{R}^{k+1}) \end{displaymath} and \begin{displaymath} Gr_n(\mathbb{C}^k) \hookrightarrow Gr_n(\mathbb{C}^{k+1}) \end{displaymath} for all $k \in \mathbb{N}$. The [[colimit]] (in [[Top]], see \href{Top#UniversalConstructions}{there}) over these inclusions is denoted \begin{displaymath} B O(n) \coloneqq \underset{\longrightarrow}{\lim}_k Gr_n(\mathbb{R}^k) \end{displaymath} and \begin{displaymath} B U(n) \coloneqq \underset{\longrightarrow}{\lim}_k Gr_n(\mathbb{C}^k) \,, \end{displaymath} respectively. Moreover, by def. \ref{StiefelManifold} there are canonical inclusions \begin{displaymath} V_n(\mathbb{R}^k) \hookrightarrow V_n(\mathbb{R}^{k+1}) \end{displaymath} and \begin{displaymath} V_n(\mathbb{C}^k) \hookrightarrow V_n(\mathbb{C}^{k+1}) \,, \end{displaymath} respectively, that are compatible with the $O(n)$-[[action]] and the $U(n)$-action, respectively. The [[colimit]] (in [[Top]], see \href{Top#UniversalConstructions}{there}) over these inclusions, regarded as equipped with the induced [[action]], is denoted \begin{displaymath} E O(n) \coloneqq \underset{\longrightarrow}{\lim}_k V_n(\mathbb{R}^k) \end{displaymath} and \begin{displaymath} E U(n) \coloneqq \underset{\longrightarrow}{\lim}_k V_n(\mathbb{C}^k) \,, \end{displaymath} respectively. The inclusions are in fact compatible with the bundle structure from prop. \ref{ProjectionFromStiefelManifoldToGrassmannianIsFiberBundle}, so that there are induced projections \begin{displaymath} \left( \itexarray{ E O(n) \\ \downarrow \\ B O(n) } \right) \;\; \simeq \;\; \underset{\longrightarrow}{\lim}_k \left( \itexarray{ V_n(\mathbb{R}^k) \\ \downarrow \\ Gr_n(\mathbb{R}^k) } \right) \end{displaymath} and \begin{displaymath} \left( \itexarray{ E U(n) \\ \downarrow \\ B U(n) } \right) \;\; \simeq \;\; \underset{\longrightarrow}{\lim}_k \left( \itexarray{ V_n(\mathbb{C}^k) \\ \downarrow \\ Gr_n(\mathbb{C}^k) } \right) \,, \end{displaymath} respectively. These are the standard models for the \textbf{[[universal principal bundles]]} for $O$ and $U$, respectively. The corresponding [[associated bundles|associated]] [[vector bundles]] \begin{displaymath} E O(n) \underset{O(n)}{\times} \mathbb{R}^n \end{displaymath} and \begin{displaymath} E U(n) \underset{U(n)}{\times} \mathbb{C}^n \end{displaymath} are the corresponding \textbf{[[universal vector bundles]]}. \end{defn} Since the [[Cartesian product]] $O(n)\times (-)$ in [[compactly generated topological spaces]] preserves [[colimits]], it follows that the colimiting bundle is still an $O(n)$-[[principal bundle]] \begin{displaymath} \begin{aligned} (E O(n))/O(n) & \simeq (\underset{\longrightarrow}{\lim}_k V_{n}(\mathbb{R}^k))/O(n) \\ & \simeq \underset{\longrightarrow}{\lim}_k (V_n(\mathbb{R}^k)/O(n)) \\ & \simeq \underset{\longrightarrow}{\lim}_k Gr_n(\mathbb{R}^k) \\ & \simeq B O(n) \end{aligned} \end{displaymath} and anlogously for $E U(n)$. As such this is the standard presentation for the $O(n)$-[[universal principal bundle]]. Its base space $B O(n)$ is the corresponding \emph{classifying space}. \begin{defn} \label{InclusionOfBOnIntoBOnPlusOne}\hypertarget{InclusionOfBOnIntoBOnPlusOne}{} There are canonical inclusions \begin{displaymath} Gr_n(\mathbb{R}^k) \hookrightarrow Gr_{n+1}(\mathbb{R}^{k+1}) \end{displaymath} and \begin{displaymath} Gr_n(\mathbb{C}^k) \hookrightarrow Gr_{n+1}(\mathbb{C}^{k+1}) \end{displaymath} given by adjoining one coordinate to the ambient space and to any subspace. Under the colimit of def. \ref{EOn} these induce maps of classifying spaces \begin{displaymath} B O(n) \longrightarrow B O(n+1) \end{displaymath} and \begin{displaymath} B U(n) \longrightarrow B U(n+1) \,. \end{displaymath} \end{defn} \begin{defn} \label{WhitneySumMapOnClassifyingSpaces}\hypertarget{WhitneySumMapOnClassifyingSpaces}{} There are canonical maps \begin{displaymath} Gr_{n_1}(\mathbb{R}^{k_1}) \times Gr_{n_2}(\mathbb{R}^{k_2}) \longrightarrow Gr_{n_1 + n_2}(\mathbb{R}^{k_1 + k_2}) \end{displaymath} and \begin{displaymath} Gr_{n_1}(\mathbb{C}^{k_1}) \times Gr_{n_2}(\mathbb{C}^{k_2}) \longrightarrow Gr_{n_1 + n_2}(\mathbb{C}^{k_1 + k_2}) \end{displaymath} given by sending ambient spaces and subspaces to their [[direct sum]]. Under the colimit of def. \ref{EOn} these induce maps of classifying spaces \begin{displaymath} B O(n_1) \times B O(n_2) \longrightarrow B O(n_1 + n_2) \end{displaymath} and \begin{displaymath} B U(n_1) \times B U(n_2) \longrightarrow B U(n_1 + n_2) \end{displaymath} \end{defn} \hypertarget{properties}{}\paragraph*{{Properties}}\label{properties} \begin{prop} \label{CWComplexStructure}\hypertarget{CWComplexStructure}{} The real [[Grassmannians]] $Gr_n(\mathbb{R}^k)$ and the complex Grassmannians $Gr_n(\mathbb{C}^k)$ of def. \ref{RealAndComplexGrassmannian} admit the structure of [[CW-complexes]]. Moreover the canonical inclusions \begin{displaymath} Gr_n(\mathbb{R}^k) \hookrightarrow Gr_n(\mathbb{R}^{k+1}) \end{displaymath} and \begin{displaymath} Gr_n(\mathbb{C}^k) \hookrightarrow Gr_n(\mathbb{C}^{k+1}) \end{displaymath} are subcomplex incusions (hence [[relative cell complex]] inclusions). Accordingly there is an induced CW-complex structure on the [[classifying spaces]] $B O(n)$ and $B U(n)$ (def. \ref{EOn}). \end{prop} A proof is spelled out in (\hyperlink{Hatcher}{Hatcher, section 1.2 (pages 31-34)}). \begin{prop} \label{}\hypertarget{}{} The [[Stiefel manifold]] $V_n(\mathbb{R}^k)$ from def. \ref{StiefelManifold} admits the structure of a [[CW-complex]]. \end{prop} e.g. (\href{Stiefel+manifold#James59}{James 59, p. 3}, \href{Stiefel+manifold#James76}{James 76, p. 5 with p. 21}, \href{Stiefel+manifold#Blaszczyk07}{Blaszczyk 07}) (And I suppose with that cell structure the inclusions $V_n(\mathbb{R}^k) \hookrightarrow V_n(\mathbb{R}^{k+1})$ are subcomplex inclusions.) \begin{prop} \label{}\hypertarget{}{} The [[Stiefel manifold]] $V_n(\mathbb{R}^k)$ (def. \ref{StiefelManifold}) is [[n-connected topological space|(k-n-1)-connected]]. \end{prop} \begin{proof} Consider the [[coset]] [[quotient]] [[projection]] \begin{displaymath} O(k-n) \longrightarrow O(k) \longrightarrow O(k)/O(k-n) = V_n(\mathbb{R}^k) \,. \end{displaymath} Since the orthogonal groups is compact (\href{orthogonal+group#OrthogonalGroupIsCompact}{prop.}) and by \href{coset#QuotientProjectionForCompactLieSubgroupIsPrincipal}{this corollary} the projection $O(k)\to O(k)/O(k-n)$ is a [[Serre fibration]]. Therefore there is induced the [[long exact sequence of homotopy groups]] of this [[fiber sequence]], and by \href{orthogonal+group#InclusionOfOnIntoOkIsnMinus1Equivalence}{this prop.} it has the following form in degrees bounded by $n$: \begin{displaymath} \cdots \to \pi_{\bullet \leq k-n-1}(O(k-n)) \overset{epi}{\longrightarrow} \pi_{\bullet \leq k-n-1}(O(k)) \overset{0}{\longrightarrow} \pi_{\bullet \leq k-n-1}(V_n(\mathbb{R}^k)) \overset{0}{\longrightarrow} \pi_{\bullet-1 \lt k-n-1}(O(k)) \overset{\simeq}{\longrightarrow} \pi_{\bullet-1 \lt k-n-1}(O(k-n)) \to \cdots \,. \end{displaymath} This implies the claim. (Exactness of the sequence says that every element in $\pi_{\bullet \leq n-1}(V_n(\mathbb{R}^k))$ is in the kernel of zero, hence in the image of 0, hence is 0 itself.) \end{proof} Similarly: \begin{prop} \label{}\hypertarget{}{} The complex [[Stiefel manifold]] $V_n(\mathbb{C}^k)$ (def. \ref{StiefelManifold}) is [[n-connected topological space|2(k-n)-connected]]. \end{prop} \begin{proof} Consider the [[coset]] [[quotient]] [[projection]] \begin{displaymath} U(k-n) \longrightarrow U(k) \longrightarrow U(k)/U(k-n) = V_n(\mathbb{C}^k) \,. \end{displaymath} By prop. \ref{UnitaryGroupIsCompact} and by \href{coset#QuotientProjectionForCompactLieSubgroupIsPrincipal}{this corollary} the projection $U(k)\to U(k)/U(k-n)$ is a [[Serre fibration]]. Therefore there is induced the [[long exact sequence of homotopy groups]] of this [[fiber sequence]], and by prop. \ref{InclusionOfUnitaryGroupnIntoUnitaryGroupnPlusIneIsnMinus1Equivalence} it has the following form in degrees bounded by $n$: \begin{displaymath} \cdots \to \pi_{\bullet \leq 2(k-n)}(U(k-n)) \overset{epi}{\longrightarrow} \pi_{\bullet \leq 2(k-n)}(U(k)) \overset{0}{\longrightarrow} \pi_{\bullet \leq 2(k-n)}(V_n(\mathbb{C}^k)) \overset{0}{\longrightarrow} \pi_{\bullet-1 \lt 2(k-n)}(U(k)) \overset{\simeq}{\longrightarrow} \pi_{\bullet-1 \lt 2(k-n)}(U(k-n)) \to \cdots \,. \end{displaymath} This implies the claim. \end{proof} \begin{cor} \label{EOnIsWeaklyContractible}\hypertarget{EOnIsWeaklyContractible}{} The colimiting space $E O(n) = \underset{\longrightarrow}{\lim}_k V_n(\mathbb{R}^k)$ from def. \ref{EOn} is [[weakly contractible topological space|weakly contractible]]. The colimiting space $E U(n) = \underset{\longrightarrow}{\lim}_k V_n(\mathbb{C}^k)$ from def. \ref{EOn} is [[weakly contractible topological space|weakly contractible]]. \end{cor} \begin{prop} \label{HomotopyGroupsOfBOnThoseOfOnShifted}\hypertarget{HomotopyGroupsOfBOnThoseOfOnShifted}{} The [[homotopy groups]] of the classifying spaces $B O(n)$ and $B U(n)$ (def. \ref{EOn}) are those of the [[orthogonal group]] $O(n)$ and of the [[unitary group]] $U(n)$, respectively, shifted up in degree: there are [[isomorphisms]] \begin{displaymath} \pi_{\bullet+1}(B O(n)) \simeq \pi_\bullet O(n) \end{displaymath} and \begin{displaymath} \pi_{\bullet+1}(B U(n)) \simeq \pi_\bullet U(n) \end{displaymath} (for homotopy groups based at the canonical basepoint). \end{prop} \begin{proof} Consider the sequence \begin{displaymath} O(n) \longrightarrow E O(n) \longrightarrow B O(n) \end{displaymath} from def. \ref{EOn}, with $O(n)$ the [[fiber]]. Since (by \href{coset#ProjectionOfCosetsIsFiberBundleForClosedSubgroupsOfCompactLieGroup}{this prop.}) the second map is a [[Serre fibration]], this is a [[fiber sequence]] and so it induces a [[long exact sequence of homotopy groups]] of the form \begin{displaymath} \cdots \to \pi_\bullet(O(n)) \longrightarrow \pi_\bullet(E O(n)) \longrightarrow \pi_\bullet(B O(n)) \longrightarrow \pi_{\bullet-1}(O (n)) \longrightarrow \pi_{\bullet-1}(E O(n)) \to \cdots \,. \end{displaymath} Since by cor. \ref{EOnIsWeaklyContractible} $\pi_\bullet(E O(n))= 0$, exactness of the sequence implies that \begin{displaymath} \pi_\bullet(B O(n)) \overset{\simeq}{\longrightarrow} \pi_{\bullet-1}(O (n)) \end{displaymath} is an isomorphism. The same kind of argument applies to the complex case. \end{proof} \begin{prop} \label{SphereFibrationOverInclusionOfClassifyingSpaces}\hypertarget{SphereFibrationOverInclusionOfClassifyingSpaces}{} For $n \in \mathbb{N}$ there are [[homotopy fiber sequences]] \begin{displaymath} S^n \longrightarrow B O(n) \longrightarrow B O(n+1) \end{displaymath} and \begin{displaymath} S^{2n+1} \longrightarrow B U(n) \longrightarrow B U(n+1) \,, \end{displaymath} exhibiting the [[n-sphere]] ($(2n+1)$-sphere) as the [[homotopy fiber]] of the canonical maps from def. \ref{InclusionOfBOnIntoBOnPlusOne}. This means that there is a replacement of the canonical inclusion $B O(n) \hookrightarrow B O(n+1)$ (induced via def. \ref{EOn}) by a [[Serre fibration]] \begin{displaymath} \itexarray{ B O(n) &\hookrightarrow& B O(n+1) \\ {}^{\mathllap{{weak \, homotopy} \atop equivalence}}\downarrow & \nearrow_{\mathrlap{Serre \, fib.}} \\ \tilde B O(n) } \end{displaymath} such that $S^n$ is the ordinary [[fiber]] of $B O(n)\to \tilde B O(n+1)$, and analogously for the complex case. \end{prop} \begin{proof} Take $\tilde B O(n) \coloneqq (E O(n+1))/O(n)$. To see that the canonical map $B O(n)\longrightarrow (E O(n+1))/O(n)$ is a [[weak homotopy equivalence]] consider the [[commuting diagram]] \begin{displaymath} \itexarray{ O(n) &\overset{id}{\longrightarrow}& O(n) \\ \downarrow && \downarrow \\ E O(n) &\longrightarrow& E O(n+1) \\ \downarrow && \downarrow \\ B O(n) &\longrightarrow& (E O(n+1))/O(n) } \,. \end{displaymath} By \href{coset#ProjectionOfCosetsIsFiberBundleForClosedSubgroupsOfCompactLieGroup}{this prop.} both bottom vertical maps are [[Serre fibrations]] and so both vertical sequences are [[fiber sequences]]. By prop. \ref{HomotopyGroupsOfBOnThoseOfOnShifted} part of the induced morphisms of [[long exact sequences of homotopy groups]] looks like this \begin{displaymath} \itexarray{ \pi_\bullet(B O(n)) &\overset{}{\longrightarrow}& \pi_\bullet( (E O(n+1))/O(n) ) \\ {}^{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\simeq}} \\ \pi_{\bullet-1}(O(n)) &\overset{=}{\longrightarrow}& \pi_{\bullet-1}(O(n)) } \,, \end{displaymath} where the vertical and the bottom morphism are isomorphisms. Hence also the to morphisms is an isomorphism. That $B O(n)\to \tilde B O(n+1)$ is indeed a [[Serre fibration]] follows again with \href{coset#ProjectionOfCosetsIsFiberBundleForClosedSubgroupsOfCompactLieGroup}{this prop.}, which gives the [[fiber sequence]] \begin{displaymath} O(n+1)/O(n) \longrightarrow (E O(n+1))/O(n) \longrightarrow (E O(n+1))/O(n+1) \,. \end{displaymath} The claim in then follows since (\href{coset#nSphereAsCosetSpace}{this exmpl.}) \begin{displaymath} O(n+1)/O(n) \simeq S^n \,. \end{displaymath} The argument for the complex case is of the same form, concluding now with the identification (\href{unitary+group#nSphereAsUnitaryCosetSpace}{this exmpl.}) \begin{displaymath} U(n+1)/U(n) \simeq S^{2n+1} \,. \end{displaymath} \end{proof} \hypertarget{classification_of_bundles}{}\paragraph*{{Classification of bundles}}\label{classification_of_bundles} \begin{prop} \label{}\hypertarget{}{} For $X$ a [[paracompact topological space]], the operation of [[pullback]] of the [[universal principal bundle]] $E O(n) \to B O(n)$ from def. \ref{EOn} along [[continuous functions]] $f \colon X \to B O(n)$ eastblishes a [[bijection]] \begin{displaymath} [X, B O(n)] \underoverset{iso}{f \mapsto f^\ast E O(n)}{\longrightarrow} O(n) Bund/_\sim \end{displaymath} between [[homotopy classes]] of functions from $X$ to $B O(n)$ and isomorphism classes of $O(n)$-[[principal bundles]] on $X$. \end{prop} A full proof is spelled out in (\hyperlink{Hatcher}{Hatcher, section 1.2, theorem 1.16}) \hypertarget{for_symmetric_principal_bundles}{}\subsubsection*{{For symmetric principal bundles}}\label{for_symmetric_principal_bundles} \begin{itemize}% \item the \emph{unordered} [[Fadell's configuration space]] of $n$ points in $\mathbb{R}^\infty$ is a model for the classifying space $B \Sigma(n)$ of the [[symmetric group]] $\Sigma(n)$; \item the \emph{ordered} configuration space of $n$ points, equipped with the canonical $\Sigma(n)$-[[action]], is a model for the $\Sigma(n)$-[[universal principal bundle]]. \end{itemize} \hypertarget{for_crossed_complexes}{}\subsubsection*{{For crossed complexes}}\label{for_crossed_complexes} We discuss here classifying spaces of [[crossed complex]]es. The notion of classifying space should be regarded in general terms as giving a functor \begin{displaymath} \mathcal{B} :(algebraic data) \to (topological data). \end{displaymath} Composition with a forgetful functor $U: (topological data) \to (topological spaces)$ gives a [[classifying space]]. In such cases one would also like a homotopically defined functor \begin{displaymath} \Xi: (topological data) \to (algebraic data) \end{displaymath} such that \begin{enumerate}% \item $\Xi \circ \mathcal{B}$ is equivalent to the identity; \item $\Xi$ preserves certain colimits (Generalised [[van Kampen theorem]]) allowing some calculation; \item there are notions of homotopy for both types of data leading to a bijection of homotopy classes for some $X$ \end{enumerate} \begin{displaymath} [X,U\mathcal{B}C] \cong [\Xi X_*, C]. \end{displaymath} This happens for the algebraic data of crossed complexes and the topological data of filtered spaces, when $X$ is a CW-complex, and $\Xi$ is the fundamental crossed complex of a filtered space. Thus in this case the classifying space does classify homotopy classes of maps, and more work is needed to sort out the data over $X$ which this classifies (gerbes?). However $\mathcal{B}C$ is in this case defined by a nerve construction which generalises that for groupoids, and can also be applied to topological crossed crossed complexes, giving a simplicial space. [[Mike Shulman|Mike]]: I don't really get any intuition from that. There might be lots of functors from ``algebraic data'' to ``topological data'' but it seems to me that only particular sorts of them deserve the name ``classifying space.'' Can you say more specifically what sorts of functors you have in mind, and relate it to the more basic ideas that I am familiar with? What do these classifying spaces classify? [[Ronnie Brown|Ronnie]] What I am trying to characterise is that higher categories carry structure such as a filtration by lower dimensional higher categories, or, for multiple structures, a multiple filtration. Thus one expects a classifying space to inherit this extra structure. Conversely, the construction of an infinity-groupoid from a space might depend on this extra structure. So I spent 9 years trying to construct a \emph{strict} homotopy double groupoid of a space, yet Philip Higgins and I did this overnight in 1974 when we tried the simplest relative example we could think of: take homotopy classes of maps from a square to $X$ which take the edges to a subspace $X_1$ and the vertices to a base point $x_0$. Then the filtered case took another 4 years or so to complete. Then Loday constructed a [[cat-n-group]] from an n-cube of spaces, published in 1982. Its multi-nerve is an $(n+1)$-simplicial set, whose realisation is $(n+1)$-filtered. A strict homotopy double groupoid of a Hausdorff space has been constructed but this needs a subtle notion of [[thin element|thin]] homotopy. Of course the filtration for a group is not so apparent, but it is more clear that [[groupoids]] carry structure in dimension 0 and 1, and hence are useful for representing non connected homotopy 1-types, and their identifications in dimension 0, as explained in the first edition (1968) of my Topology book. The intuition for the [[higher homotopy van Kampen theorem]] is that you need \emph{structure in all dimensions from 0 to n}to get colimit theorems in dimension n, because in homotopy, low dimensional identifications, even in dimension 0, usually effect high dimensional homotopy information. In effect, the [[higher homotopy van Kampen theorem]] is about gluing [[homotopy n-types]]. \emph{Mike}: Thanks, that is helpful. Some such constructions arise from generalisations of the [[Dold-Kan correspondence]], with values in [[simplicial sets]]. For example, from a [[crossed complex]] $C$ one obtains a simplicial set $Nerve(C)$ which in dimension $n$ is $Crs(\Pi(\Delta^n_*),C)$. The geometric realisation $\mathcal{B}C$ of this is canonically filtered by the skeleta of $C$, so $\mathcal{B}$ is really a functor to [[filtered spaces]]. This ties in with the functor $\Pi$ which goes in the opposite direction. But note that there is a different filtration of the space $\mathcal{B}C$ since it is a CW-complex, and so $\Pi$ of this filtration gives a free crossed complex. Special cases of crossed complexes are [[groupoids]], and so we get the classifying space of a groupoid; and similarly of a [[crossed module]]. A crossed module is equivalent to a category object in groups, and so a nerve of this can be constructed as a bisimplicial set. The geometric realisation of this is naturally bifiltered, in several ways! In considering what is desirable for a [[fundamental infinity-groupoid]] one should bring the notion of classifying space, and its inherited structure, into account. \hypertarget{for_simplicial_groups}{}\subsubsection*{{For simplicial groups}}\label{for_simplicial_groups} The $\bar W(-)$-construction (see [[simplicial group]] and [[groupoid object in an (∞,1)-category]]) which gives the classifying space functor for [[simplicial group]]s and simplicially enriched groupoids is given in the entry on [[simplicial group|simplicial groups]]. It provides a good example of the above as the W-bar functor is right adjoint to the [[Dwyer-Kan loop groupoid]] functor and induces an equivalence of homotopy categories between that of simplicial sets and that of simplicially enriched groupoids. The simplicial sets here are playing the role of `topological data'. \hypertarget{properties_2}{}\subsection*{{Properties}}\label{properties_2} \hypertarget{for_classical_lie_groups}{}\subsubsection*{{For classical Lie groups}}\label{for_classical_lie_groups} Let $O(n)$ be the [[orthogonal group]] and $U(n)$ the [[unitary group]] in real/complex [[dimension]] $n$, respectively. \begin{prop} \label{CWComplexStructure}\hypertarget{CWComplexStructure}{} The real [[Grassmannians]] $Gr_n(\mathbb{R}^k)$ and the complex Grassmannians $Gr_n(\mathbb{C}^k)$ admit the structure of [[CW-complexes]]. Moreover the canonical inclusions \begin{displaymath} Gr_n(\mathbb{R}^k) \hookrightarrow Gr_n(\mathbb{R}^{k+1}) \end{displaymath} are subcomplex incusion (hence [[relative cell complex]] inclusions). Accordingly there is an induced CW-complex structure on the classifying space \begin{displaymath} B O(n) \simeq \underset{\longrightarrow}{\lim}_k Gr_n(\mathbb{R}^k) \,. \end{displaymath} \end{prop} A proof is spelled out in (\hyperlink{Hatcher}{Hatcher, section 1.2 (pages 31-34)}). \begin{prop} \label{}\hypertarget{}{} The classifying spaces $B O(n)$ are [[paracompact spaces]]. \end{prop} An early source of this statement is (\hyperlink{CartanSchwartz63}{Cartan-Schwartz 63, expos\'e{} 5}). It follows for instance by prop. \ref{CWComplexStructure} the fact that every [[CW-complex]] is paracompact. \hypertarget{cohomology}{}\subsubsection*{{Cohomology}}\label{cohomology} [[!include Segal completion -- table]] \hypertarget{moduli_spaces}{}\subsection*{{Moduli spaces}}\label{moduli_spaces} The notion of \textbf{[[moduli space]]} is closely related to that of classifying space, but has some subtle differences. See there for more on this. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{classifying space}, [[classifying stack]], [[moduli space]], [[moduli stack]], [[derived moduli space]], [[Kan-Thurston theorem]] \begin{itemize}% \item [[Milnor classifying space]] \item [[numerable bundle]] \item [[acyclic group]] \end{itemize} \item [[classifying topos]] \item [[universal principal bundle]], [[universal principal ∞-bundle]] \item [[subobject classifier]] \item [[classifying morphism]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Original accounts include \begin{itemize}% \item [[Henri Cartan]], [[Laurent Schwartz]], \emph{Le th\'e{}or\'e{}me d'Atiyah-Singer} S\'e{}minaire 1963/1964. New York: Benjamin 1967. \end{itemize} Textbook accounts on classifying spaces for [[vector bundles]] include \begin{itemize}% \item [[Stanley Kochmann]], section 1.3 of of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[Peter May]], chapter 23 of \emph{A concise course of algebraic topology} (\href{http://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf}{pdf}) \item [[Allen Hatcher]], section 1.2 of \emph{Vector bundles and K-theory} (\href{https://www.math.cornell.edu/~hatcher/VBKT/VBpage.html}{web}) \item [[Dale Husemoeller]], [[Michael Joachim]], [[Branislav Jurco]], [[Martin Schottenloher]], \emph{[[Basic Bundle Theory and K-Cohomology Invariants]]}, Lecture Notes in Physics, Springer 2008 (\href{http://www.mathematik.uni-muenchen.de/~schotten/Texte/978-3-540-74955-4_Book_LNP726corr1.pdf}{pdf}) \end{itemize} A discussion more from the point of view of [[topos theory]] is in \begin{itemize}% \item [[Ieke Moerdijk]], \emph{Classifying spaces and classifying topoi}, Lecture Notes in Math. 1616, Springer-Verlag, New York, 1995. \end{itemize} Discussion of [[universal principal bundles]] over their classifying spaces is in \begin{itemize}% \item Stephen Mitchell, \emph{Notes on principal bundles and classifying spaces}, Lecture Notes. University of Washington, 2011 (\href{https://sites.math.washington.edu/~mitchell/Notes/prin.pdf}{pdf}) \end{itemize} Discussion of characterization of principal bundles by rational [[universal characteristic classes]] and torsion information is in the appendices of \begin{itemize}% \item Igor Belegradek, Vitali Kapovitch, \emph{Obstructions to nonnegative curvature and rational homotopy theory} (\href{http://arxiv.org/abs/math/0007007}{arXiv:math/0007007}) \item Igor Belegradek, \emph{Pinching, Pontrjagin classes, and negatively curved vector bundles} (\href{http://arxiv.org/abs/math/0001132}{arXiv:math/0001132}) \end{itemize} Discussion of classifying spaces in the context of [[measure theory]] is in \begin{itemize}% \item Ivan Marin, \emph{Measure theory and classifying spaces} (\href{https://arxiv.org/abs/1702.01889}{arXiv:1702.01889}) \end{itemize} [[!redirects classifying spaces]] \end{document}