\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{clique} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]]=-- \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{objects_with_universal_properties}{Objects with universal properties}\dotfill \pageref*{objects_with_universal_properties} \linebreak \noindent\hyperlink{cliques_and_anafunctors}{Cliques and anafunctors}\dotfill \pageref*{cliques_and_anafunctors} \linebreak \noindent\hyperlink{monoidal_strictifications}{Monoidal strictifications}\dotfill \pageref*{monoidal_strictifications} \linebreak \noindent\hyperlink{in_graph_theory}{In graph theory}\dotfill \pageref*{in_graph_theory} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{clique} of a category $C$ is a [[functor]] $T \to C$ from a [[(-2)-groupoid]] $T$, or equivalently an [[anafunctor]] to $C$ from the [[trivial category]]. So this is a pair of a category $T$ which is weakly equivalent to $1$ (i.e., $T$ is the [[indiscrete category]] on an [[inhabited set|inhabited collection]] of [[object]]s) and a [[functor]] $A\colon T \rightarrow C$. A clique is also sometimes called an \textbf{anaobject}, since an [[object]] of $C$ is a [[functor]] (not anafunctor) to $C$ from the trivial category. We can form a category \textbf{$Clique(C)$} whose objects are cliques of $C$, and whose morphisms and compositions are given as follows: Given two such cliques $(T_0, A_0)$ and $(T_1, A_1)$ in $C$, say that a morphism between them is a natural transformation from $T_0 \times T_1 \stackrel{\pi}{\to} T_0 \stackrel{A_0}{\to} C$ to $T_0 \times T_1 \stackrel{\pi}{\to} T_1 \stackrel{A_1}{\to} C$, where the $\pi$ are the appropriate projections. Given such morphisms $m : (T_0, A_0) \rightarrow (T_1, A_1)$ and $n : (T_1, A_1) \rightarrow (T_2, A_2)$, and $(t_0, t_2) \in Ob(T_0 \times T_2)$, note that the composite $n_{(t_1, t_2)} m_{(t_0, t_1)}$ of corresponding components has the same value no matter what the choice of $t_1 \in Ob(T_1)$, and there is at least one such choice. Accordingly, we can take this to give a well-defined component $(n m)_{(t_0, t_2)}$, thus defining binary composition of morphisms of cliques. Similarly, we can take the identity on a clique $(T, A)$ to be the natural transformation whose component on $(t, t') \in Ob(T \times T)$ is the value of $A$ on the unique morphism from $t$ to $t'$ in $T$. \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{objects_with_universal_properties}{}\subsubsection*{{Objects with universal properties}}\label{objects_with_universal_properties} Many [[universal properties]] that are commonly considered as defining ``an object'' actually define a clique. For example, given two objects $a$ and $b$ of a category $C$, their [[cartesian product]] can be considered as the clique $T\to C$, where $T$ is the indiscrete category whose objects are product diagrams $a \overset{\leftarrow}{p} c \overset{\to}{q} b$, and where the functor $T\to C$ sends each such diagram to the object $c$ and each morphism to the unique comparison isomorphism between two cartesian products. Note that unlike ``the product'' of $a$ and $b$ considered as a single object, this clique is defined without making any arbitrary choices. This of course is the same philosophy which leads to [[anafunctors]], and so cliques are closely related to anafunctors. \hypertarget{cliques_and_anafunctors}{}\subsubsection*{{Cliques and anafunctors}}\label{cliques_and_anafunctors} There is an obvious [[anafunctor]] from $Clique(C)$ into $C$, through which every other anafunctor into $C$ factors in an essentially unique way into a genuine functor. This induces for $Clique(-)$ the structure of a (2-)monad on $Str Cat$ (the (2-)category of ``genuine'' functors between categories), such that the [[Kleisli category]] for this monad will be $Cat_{ana}$ (the (2-)category of anafunctors between categories). This monad can also be described more explicitly; in particular the unit (a ``genuine'' functor) $C\to Clique(C)$ takes each object $c\in C$ to the corresponding clique $c\colon 1\to C$ defined on the domain $1$. Note that this functor is a [[weak equivalence]], i.e. fully faithful and essentially surjective on objects, but not a strong equivalence unless one assumes the [[axiom of choice]]. In particular, we can use cliques to \emph{define} anafunctors, taking an anafunctor from $C$ into $D$ to simply be a genuine functor from $C$ into $Clique(D)$. (With composition of these defined in a straightforward way, and natural transformations between these being simply natural transformations of the corresponding genuine functors into $Clique(D)$). Accordingly, $Clique(-)$ is itself the same as $Cat_{ana}(1, -)$, and this can also be taken as a definition of a clique (hence the alternate name \emph{anaobject}). \hypertarget{monoidal_strictifications}{}\subsubsection*{{Monoidal strictifications}}\label{monoidal_strictifications} Unsurprisingly, cliques provide a useful technical device for describing strictifications of [[monoidal category|monoidal categories]]. It is relevant first to recall the original form of Mac Lane's [[coherence theorems|coherence theorem]]: the free monoidal category on one generator, $F[1]$, is monoidally equivalent to the discrete monoidal category $(\mathbb{N}, +, 0)$. Thus each connected component $C_n$ of $F[1]$ is an indiscrete category whose objects are the possible $n$-fold tensor products of the generator, possibly with instances of the unit object folded in; the indiscreteness says that ``all diagrams built from associativity and unit constraints commute''. One canonical way to strictify a monoidal category $M$ is by considering cliques in $M$ where the domains are the $C_n$ and the functors model associativity and unit constraints, in the following precise sense: \begin{enumerate}% \item We may form a monoidal category $Oper(M)$ whose objects are functors \begin{displaymath} F: M^j \to M \end{displaymath} and whose morphisms are natural transformations between such functors. The tensor product of $F: M^j \to M$ and $G: M^k \to M$ in $Oper(M)$ is the composite \begin{displaymath} M^{j+k} \cong M^j \times M^k \stackrel{F \times G}{\to} M \times M \stackrel{\otimes}{\to} M \end{displaymath} and the rest of the monoidal structure on $Oper(M)$ is inherited from the monoidal structure on $M$. \item By freeness of $F[1]$, we have a (strict) monoidal functor \begin{displaymath} \kappa: F[1] \to Oper(M) \end{displaymath} uniquely determined as the one which sends the generator $1$ of $F[1]$ to $Id_M$. On each connected component $C_n$ of $F[1]$, this restricts to a functor \begin{displaymath} C_n \stackrel{\kappa|}{\to} Cat(M^n, M) \end{displaymath} \item Then, for each $n$-tuple of objects $(x_1, \ldots, x_n)$ of objects of $M$, there is an associated clique $\kappa_{x_1, \ldots, x_n}$ in $M$: \begin{displaymath} C_n \stackrel{\kappa|}{\to} Cat(M^n, M) \stackrel{eval_{(x_1, \ldots, x_n)}}{\to} M \end{displaymath} \item Finally, the objects of the strictification $M^{st}$ are $n$-tuples $(x_1, \ldots, x_n)$ of objects of $M$. A morphism \begin{displaymath} (x_1, \ldots, x_m) \to (y_1, \ldots, y_n) \end{displaymath} is by definition a clique morphism $\kappa_{x_1, \ldots, x_m} \to \kappa_{y_1, \ldots, y_n}$. There is an evident strict monoidal category structure on $M^{st}$ which at the object level is just concatenation of tuples. \end{enumerate} It is straightforward to check that the natural inclusion \begin{displaymath} i: M \to M^{st}, \end{displaymath} which interprets each object as a 1-tuple and each morphism as an evident clique morphism, is a monoidal equivalence. The essential idea is that there is a canonical clique isomorphism \begin{displaymath} (x_1, x_2, \ldots, x_n) \to i(Bracketing(x_1 \otimes \ldots \otimes x_n)) \end{displaymath} for every choice of bracketing the tensor product on the right in $M$ (possibly with units thrown in). \hypertarget{in_graph_theory}{}\subsection*{{In graph theory}}\label{in_graph_theory} There is a notion of clique in an undirected simple [[graph]] familiar to graph-theorists: a \emph{clique} in a graph $G$ is a subset of vertices $C \subseteq V(G)$ such that any two distinct vertices $x,y \in C$ are connected by an edge. This definition is specialized to simple graphs, however, and a more general definition that works for arbitrary undirected graphs (possibly containing loops and multiple edges) takes a clique (of size $n$) in $G$ to be a graph homomorphism $C : K_n \to G$ from the [[complete graph]] on $n$ vertices. Indeed, this latter definition could also be taken as a reasonable notion of clique in any undirected graph/[[quiver]]. Equivalently, a clique in this sense is a subgraph $C$ of $G$ which is \emph{indiscrete}: there is exactly one edge in $C$ from $x$ to $y$ for any vertices $x$, $y$ of $C$. The categorical notion of clique is one step removed from that: a clique in a category $C$ is a functor $i: K \to C$ where the underlying graph of $K$ is indiscrete. The generic ``picture'' of a clique in a category is reminiscent of (and no doubt the etymology derives from) the graph-theoretic notion, even if the notions are technically distinct. [[!redirects clique]] [[!redirects cliques]] \end{document}