\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{closed monoidal structure on presheaves} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{definition_in_terms_of_homs_of_direct_images}{Definition in terms of homs of direct images}\dotfill \pageref*{definition_in_terms_of_homs_of_direct_images} \linebreak \noindent\hyperlink{relation_of_the_two_definitions}{Relation of the two definitions}\dotfill \pageref*{relation_of_the_two_definitions} \linebreak \noindent\hyperlink{presheaves_over_a_monoidal_category}{Presheaves over a monoidal category}\dotfill \pageref*{presheaves_over_a_monoidal_category} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} As every [[topos]], a [[category of presheaves]] is [[cartesian monoidal category|cartesian]] [[closed monoidal category|closed monoidal]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{prop} \label{CartesianClosedMonoidalnessOfCategoriesOfPresheaves}\hypertarget{CartesianClosedMonoidalnessOfCategoriesOfPresheaves}{} \textbf{([[cartesian closed category|cartesian closure]] of [[categories of presheaves]])} Let $\mathcal{C}$ be a [[category]] and write $[\mathcal{C}^{op}, Set]$ for its [[category of presheaves]]. This is \begin{enumerate}% \item a [[cartesian monoidal category]], whose [[Cartesian product]] is given objectwise in $\mathcal{C}$ by the [[Cartesian product]] in [[Set]]: for $\mathbf{X}, \mathbf{Y} \in [\mathcal{C}^{op}, Set]$, their [[Cartesian product]] $\mathbf{X} \times \mathbf{Y}$ exists and is given by \begin{displaymath} \mathbf{X} \times \mathbf{Y} \;\;\colon\;\;\phantom{A} \itexarray{ c_1 &\mapsto& \mathbf{X}(c_1) \times \mathbf{Y}(c_1) \\ {}^{\mathllap{f}}\big\downarrow && \big\uparrow^{ \mathrlap{ \mathbf{X}(f) \times \mathbf{Y}(f) } } \\ c_2 &\mapsto& \mathbf{X}(c_2) \times \mathbf{Y}(c_2) } \end{displaymath} \item a [[cartesian closed category]], whose [[internal hom]] is given for $\mathbf{X}, \mathbf{Y} \in [\mathcal{C}^{op}, Set]$ by \begin{displaymath} [\mathbf{X}, \mathbf{Y}] \;\;\colon\;\;\phantom{A} \itexarray{ c_1 &\mapsto& Hom_{[\mathcal{C}^{op}, Set]}( y(c_1) \times \mathbf{X}, \mathbf{y} ) \\ {}^{ \mathllap{ f } }\big\downarrow && \big\uparrow^{ \mathrlap{ Hom_{[\mathcal{C}^{op}, Set]}( y(f) \times \mathbf{X}, \mathbf{y} ) } } \\ c_2 &\mapsto& Hom_{[\mathcal{C}^{op}, Set]}( y(c_2) \times \mathbf{X}, \mathbf{y} ) } \end{displaymath} Here $y \;\colon\; \mathcal{C} \to [\mathcal{C}^{op}, Set]$ denotes the [[Yoneda embedding]] and $Hom_{[\mathcal{C}^{op}, Set]}(-,-)$ is the [[hom-functor]] on the [[category of presheaves]]. \end{enumerate} \end{prop} (e.g. \hyperlink{MacLaneMoerdijk}{MacLane-Moerdijk, pages 46-47}). \begin{proof} The first statement is a special case of the general fact that [[limits of presheaves are computed objectwise]]. For the second statement, first assume that $[\mathbf{X}, \mathbf{Y}]$ does exist. Then by the [[adjoint functor|hom-adjunction isomorphism]] we have for any other presheaf $\mathbf{Z}$ a [[natural isomorphism]] of the form \begin{equation} Hom_{[\mathcal{C}^{op}, Set]}(\mathbf{Z}, [\mathbf{X},\mathbf{Y}]) \;\simeq\; Hom_{[\mathcal{C}^{op}, Set]}(\mathbf{Z} \times \mathbf{X}, \mathbf{Y}) \,. \label{InternalHomIsoInPresheaves}\end{equation} This holds in particular for $\mathbf{Z} = y(c)$ a [[representable functor]] (i.e. in the [[essential image]] of the [[Yoneda embedding]]) and so the [[Yoneda lemma]] implies that if it exists, then $[\mathbf{X}, \mathbf{Y}]$ must have the claimed form: \begin{displaymath} \begin{aligned} [\mathbf{X}, \mathbf{Y}](c) & \simeq Hom_{[\mathcal{C}^{op}, Set]}( y(c), [\mathbf{X}, \mathbf{Y}] ) \\ & \simeq Hom_{ [\mathcal{C}^{op}, Set] }( y(c) \times \mathbf{X}, \mathbf{Y} ) \,. \end{aligned} \end{displaymath} Hence it remains to show that this formula does make \eqref{InternalHomIsoInPresheaves} hold generally. For this we use the equivalent definition of [[adjoint functors]] in terms of the [[adjunction counit]] providing a system of [[universal arrows]]. Define a would-be [[adjunction counit]], which here is called an \emph{[[evaluation]]} morphism, by \begin{displaymath} \itexarray{ \mathbf{X} \times [\mathbf{X} , \mathbf{Y}] &\overset{ev}{\longrightarrow}& \mathbf{Y} \\ \mathbf{X}(c) \times Hom_{[\mathcal{C}^{op}, Set]}(y(c) \times \mathbf{X}, \mathbf{Y}) &\overset{ev_c}{\longrightarrow}& \mathbf{Y}(c) \\ (x, \phi) &\mapsto& \phi_c( id_c, x ) } \end{displaymath} Then it remains to show that for every morphism of presheaves of the form $\mathbf{X} \times \mathbf{A} \overset{\phantom{A}f\phantom{A}}{\longrightarrow} \mathbf{Y}$ there is a \emph{unique} morphism $\widetilde f \;\colon\; \mathbf{A} \longrightarrow [\mathbf{X}, \mathbf{Y}]$ such that \begin{equation} \itexarray{ \mathbf{X} \times \mathbf{A} && \overset{ \mathbf{X} \times \widetilde f }{\longrightarrow} && \mathbf{X} \times [\mathbf{X}, \mathbf{Y}] \\ & {}_{\mathllap{ \mathrlap{f} }}\searrow && \swarrow_{ \mathrlap{ ev } } \\ && \mathbf{Y} } \label{UniversalArrowConditionForEvaluationMapInPresheaves}\end{equation} The [[commuting diagram|commutativity]] of this diagram means in components at $c \in \mathcal{C}$ that, that for all $x \in \mathbf{X}(c)$ and $a \in \mathbf{A}(c)$ we have \begin{displaymath} \begin{aligned} ev_c( x, \widetilde f_c(a) ) & \coloneqq (\widetilde f_c(a))_c( id_c, x ) \\ & = f_c( x, a ) \end{aligned} \end{displaymath} Hence this fixes the component $\widetilde f_c(a)_c$ when its first argument is the [[identity morphism]] $id_c$. But let $g \;\colon\; d \to c$ be any morphism and chase $(id_c, x )$ through the naturality diagram for $\widetilde f_c(a)$: \begin{displaymath} \itexarray{ Hom_{\mathcal{C}}(c,c) \times \mathbf{X}(c) &\overset{ (\widetilde f_c(a))_c }{\longrightarrow}& \mathbf{Y}(c) \\ {}^{\mathllap{ g^\ast }}\big\downarrow && \big\downarrow^{\mathrlap{ g^\ast }} \\ Hom_{\mathcal{C}}(d,c) \times \mathbf{X}(d) &\overset{ (\widetilde f_c(a))_d }{\longrightarrow}& \mathbf{Y}(d) } \phantom{AAAA} \itexarray{ \{ (id_c, x ) \} &\longrightarrow& \{ f_c( x, a ) \} \\ \big\downarrow && \big\downarrow \\ \{ (g, g^\ast(x)) \} &\longrightarrow& \{ f_d( g^\ast(x), g^\ast(a) ) \} } \end{displaymath} This shows that $(\widetilde f_c(a))_d$ is fixed to be given by \begin{equation} (\widetilde f_c(a))_d( g, x' ) \;=\; f_d( x', g^\ast(a) ) \label{ComponentFormulaForEvaluationMapInPresheaves}\end{equation} at least on those pairs $(g,x')$ such that $x'$ is in the image of $g^\ast$. But, finally, $(\widetilde f_c(a))_d$ is also natural in $c$ \begin{displaymath} \itexarray{ \mathbf{A}(c) &\overset{ \widetilde f_c }{\longrightarrow}& [\mathbf{X},\mathbf{Y}](c) \\ {}^{\mathllap{g^\ast}}\big\downarrow && \big\downarrow^{\mathrlap{g^\ast}} \\ \mathbf{A}(d) &\overset{ \widetilde f_d }{\longrightarrow}& [\mathbf{X},\mathbf{Y}](d) } \end{displaymath} which implies that \eqref{ComponentFormulaForEvaluationMapInPresheaves} must hold generally. Hence naturality implies that \eqref{UniversalArrowConditionForEvaluationMapInPresheaves} indeed has a unique solution. \end{proof} \hypertarget{definition_in_terms_of_homs_of_direct_images}{}\subsection*{{Definition in terms of homs of direct images}}\label{definition_in_terms_of_homs_of_direct_images} Often another, equivalent, expression is used to express the internal hom of presheaves: Let $X$ be a [[site|pre-site]] with underlying [[category]] $S_X$. Recall from the discussion at [[site]] that just means that we have a category $S_X$ on which we consider [[presheaf|presheaves]] $F \in PSh(S_X) := [S_X^{op}, Set]$, but that it suggests that \begin{itemize}% \item to each object $U \in PSh(X)$ and in particular to each $U \in S_X \hookrightarrow PSh(X)$ there is naturally associated the pre-site $U$ with underlying category the [[comma category]] $S_U = (Y/Y(U))$; \item that the canonical [[stuff, structure, property|forgetful]] [[functor]] $j^t_{U \to X} : S_U \to S_X$, which can be thought of as a [[site|morphism of pre-sites]] $j_{U \to X} : X \to U$ induces the [[direct image]] functor $(j_{U \to X})_* : PSh(X) \to PSh(U)$ which we write $F \mapsto F|_U$. \end{itemize} Then in these terms the above \textbf{internal hom} for presheaves \begin{displaymath} hom : PSh(X)^{op} \times PSh(X) \to PSh(X) \end{displaymath} is expressed for all $F,G \in PSh(X)$ by \begin{displaymath} hom(F,G) = U \mapsto Hom_{PSh(U)}(F|_U, G|_U) \,. \end{displaymath} \hypertarget{relation_of_the_two_definitions}{}\subsection*{{Relation of the two definitions}}\label{relation_of_the_two_definitions} To see the equivalence of the two definitions, notice \begin{itemize}% \item that by the [[Yoneda lemma]] we have that $S_U$ is simply the [[over category]] $S_U = S_X/U$; \item by the general properties of [[functors and comma categories]] there is an equivalence $PSh(S_X/U) \simeq PSh(S_X)/y(U)$; \item which identifies the functor $(-)|_U : PSh(S_X) \to PSh(S_U)$ with the functor $((-)\times y(U) \stackrel{p_2}{\to} y(U)) : PSh(S_X) \to PSh(S_X)/y(U)$; \item and that $Hom_{PSh(S_X)/y(U)}(y(U) \times F, y(U) \times G) \simeq Hom_{PSh(S_X)}(y(U) \times F, G)$. \end{itemize} \hypertarget{presheaves_over_a_monoidal_category}{}\subsection*{{Presheaves over a monoidal category}}\label{presheaves_over_a_monoidal_category} It is worth noting that in the case where $X$ is itself a [[monoidal category]] $(X, \otimes, I)$, $Psh(X)$ is equipped with another (bi)closed monoidal structure given by the [[Day convolution]] product and its componentwise right adjoints. Let $F$ and $G$ be two presheaves over $X$. Their tensor product $F \star G$ can be defined by the following [[coend]] formula: \begin{displaymath} F\star G = U \mapsto \int^{U_1,U_2\in X} Hom_X(U, U_1\otimes U_2) \times F(U_1) \times G(U_2) \end{displaymath} Then we can define two right adjoints \begin{displaymath} F\star - \dashv F \backslash - \qquad -\star G \dashv - / G \end{displaymath} by the following [[end]] formulas: \begin{displaymath} F \backslash H = V \mapsto \int_{U\in X} F(U) \to H(U\otimes V) \end{displaymath} \begin{displaymath} H / G = U \mapsto \int_{V\in X} G(V) \to H(U\otimes V) \end{displaymath} In the case where the monoidal structure on $X$ is cartesian, the induced closed monoidal structure on $Psh(X)$ coincides with the cartesian closed structure described in the previous sections. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item The cartesian closure restricts from presheaves to [[categories of sheaves]] (e.g. \hyperlink{MacLaneMoerdijk}{MacLane-Moerdijk, p. 136-138}) \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The first definition is discussed for instance in section I.6 of \begin{itemize}% \item [[Saunders MacLane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} \end{itemize} The second definition is discussed for instance in section 17.1 of \begin{itemize}% \item [[Masaki Kashiwara]], [[Pierre Schapira]], \emph{[[Categories and Sheaves]]} \end{itemize} [[!redirects ccc structure on presheaves]] [[!redirects cartesian closed structure on presheaves]] [[!redirects cartesian closed monoidal structure on presheaves]] [[!redirects cartesian closure of categories of presheaves]] [[!redirects categories of presheaves are cartesian closed]] \end{document}