\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{co-Heyting algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak [[!redirects coHeyting algebra]] [[!redirects Co-Heyting algebra]] [[!redirects CoHeyting algebra]] [[!redirects bi-Heyting algebra]] [[!redirects biHeyting agebra]] [[!redirects Brouwerian algebra]] \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} When the [[lattice of open subsets]] of a [[topological space]] is the primordial example of a [[Heyting algebra]] then its dual \emph{lattice of [[closed subsets]]} is the primordial example of a \textbf{co-Heyting algebra}. In general, co-Heyting algebras are [[duality|dual]] to Heyting algebras and like them come equipped with non-Boolean logical operators that make them interesting players in [[modal logic|modal]], [[paraconsistent logic|paraconsistent]], and co-intuitionistic logic, [[linguistics]], [[topos theory]], [[continuum physics]], [[quantum theory]] and in [[mereology]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{co-Heyting algebra} is a bounded [[distributive lattice]] $L$ equipped with a binary \emph{[[subtraction]]} operation $\backslash :L\times L\to L$ such that $x\backslash y\leq z$ iff $x\leq y\vee z$.\footnote{Existence of $\backslash$ amounts to an [[adjunction]] \_$\backslash y\dashv y\vee$\_ and the existence of a left adjoint implies that $y\vee$\_ preserves limits $\wedge$ hence the assumption of distributivity in the definition is redundant and has been put in for emphasis only.} A \textbf{bi-Heyting algebra} is a bounded distributive lattice $L$ that carries a Heyting algebra structure with implication $\Rightarrow$ and a co-Heyting algebra structure with subtraction $\backslash$. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item Co-Heyting algebras were initially called \emph{Brouwerian algebras} . Bi-Heyting algebras were introduced and studied in a series of papers by Cecylia Rauszer in the 1970s who called them \emph{semi-Boolean algebras} which suggests to view them as a generalization of [[Boolean algebra|Boolean algebras]]. \item A [[topos]] $\mathcal{E}$ such that the lattice $sub(X)$ of subobjects is a bi-Heyting algebra for every object $X\in\mathcal{E}$ is called a [[bi-Heyting topos]]. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The lattice of closed subsets of a topological space is a co-Heyting algebra with $X\backslash Y=\overline{X\cap Y^c}\quad$. \item A Boolean algebra provides a (degenerate) example of a bi-Heyting algebra by setting $x\Rightarrow y:=\neg x\vee y$ and $x\backslash y:=x\wedge\neg y$. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item $a\backslash b=0$ iff $a\backslash b\leq 0$ iff $a\leq b\vee 0$ iff $a\leq b$. In particular, $a\backslash a=0$. \item As \_$\backslash x$ has a right adjoint it preserves colimits hence: $(a\vee b)\backslash x =(a\backslash x)\vee (b\backslash x)\quad$. \item $a\backslash 0\leq a\backslash 0$ iff $a\leq 0\vee (a\backslash 0)$ iff $a\leq a\backslash 0\quad$. On the other hand, $a\leq 0\vee a$ and the adjunction yield $a\backslash 0\leq a\quad$, hence $a\backslash 0 = a\quad$. \item Suppose $a\leq b\vee x$ then $a\backslash b\leq x$. As from $a\backslash b\leq a\backslash b$ follows $a\leq b\vee (a\backslash b)$, hence $a\backslash b =\Wedge\{x|a\leq b\vee x\}\quad$. \item The subtraction operation permits to define the [[co-Heyting negation]] $\sim: L\to L$, called \emph{non a} in Lawvere (1991), by setting $\sim a:=1\backslash a$. \item $\sim$ in turn can then be used to define the [[co-Heyting boundary|co-Heyting boundary operator]] $\partial :L\to L$ by $\partial a:=a\wedge\sim a$. That $\partial a$ is not necessary trivial is dual to the non-validity of the \emph{tertium non datur} for general Heyting algebras and points to the utility of co-Heyting algebras for [[paraconsistent logic]]. \item In [[bi-Heyting toposes]] like e.g. [[essential subtoposes]] of presheaf toposes (\hyperlink{Law91a}{Lawvere}, \hyperlink{Reyes}{Reyes}), the co-Heyting algebra operations are generally not preserved by [[inverse image functor|inverse image functors]], so that the co-Heyting logical operators are subject to \emph{[[de re and de dicto]]} effects. The parallel between this and the [[commutator]] in quantum mechanics has been suggested by Lawvere thereby somewhat anticipating the view of D\"o{}ring (2013). \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[co-Heyting negation]] \item [[co-Heyting boundary]] \item [[Heyting algebra]] \item [[Heyting category]] \item [[distributive category]] \item [[mereology]] \item [[bi-Heyting topos]] \item [[bitopological space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item G. Bellin, \emph{Categorical Proof Theory of Co-Intuitionistic Linear Logic} , arXiv:1407.341 (2014). (\href{http://arxiv.org/pdf/1407.3416v1}{pdf}) \item G. Bezhanishvili, N. Beshanishvili, D. Gelaia, A. Kurz, \emph{Bitopological duality for distributive lattices and Heyting algebras} , Math. Struc. Comp. Sci. \textbf{20} no.3 (2010) pp.359-393. (\href{http://www.cs.le.ac.uk/people/nb118/Publications/PairwiseStone.pdf}{preprint}) \item [[Andreas Döring|A. Döring]], \emph{Topos-based Logic for Quantum Systems and Bi-Heyting Algebras} , arXiv:1202.2750 (2013). (\href{http://arxiv.org/pdf/1202.2750.pdf}{pdf}) \item M. La Palme Reyes, J. Macnamara, [[Gonzalo E. Reyes|G. E. Reyes]], H. Zolfaghari, \emph{The non-Boolean logic of natural language negation} , Phil. Math. \textbf{2} no.1 (1994) pp.45-68. \item M. La Palme Reyes, J. Macnamara, [[Gonzalo E. Reyes|G. E. Reyes]], H. Zolfaghari, \emph{Models for non-Boolean negation in natural languages based on aspect analysis} , pp.241-260 in Gabbay, Wansing (eds.), \emph{What is Negation?}, Kluwer Dordrecht 1999. \item M. La Palme Reyes, [[Gonzalo E. Reyes|G. E. Reyes]], H. Zolfaghari, \emph{Generic Figures and their Glueings} , Polimetrica Milano 2004. \item [[William Lawvere|F. W. Lawvere]], \emph{Introduction} , pp.1-16 in Lawvere, Schanuel (eds.), \emph{Categories in Continuum Physics} , Springer LNM \textbf{1174} 1986. \item [[William Lawvere|F. W. Lawvere]], \emph{Intrinsic Co-Heyting Boundaries and the Leibniz Rule in Certain Toposes} , pp.279-281 in A. Carboni, M. Pedicchio, G. Rosolini (eds.) , \emph{[[Como|Category Theory - Proceedings of the International Conference held in Como 1990]]} , LNM \textbf{1488} Springer Heidelberg 1991. \item T. Mormann, \emph{Heyting Mereology as a Framework for Spatial Reasoning} , Axiomathes \textbf{23} no.1 (2013) pp.237-264. (\href{http://philpapers.org/go.pl?id=MORCMA-3&proxyId=&u=http%3A%2F%2Fphilpapers.org%2Farchive%2FMORCMA-3.pdf}{draft}) \item [[Gonzalo E. Reyes|G. E. Reyes]], H. Zolfaghari, \emph{Bi-Heyting Algebras, Toposes and Modalities} , J. Phi. Logic \textbf{25} (1996) pp.25-43. \item C. Rauszer, \emph{Semi-Boolean algebras and their applications to intuitionistic logic with dual operations} , Fund. Math. \textbf{83} no.3 (1974) pp.219-249. (\href{http://matwbn.icm.edu.pl/ksiazki/fm/fm83/fm83120.pdf}{pdf}) \item J.G. Stell, M.F. Worboys, \emph{The algebraic structure of sets of regions} , pp.163-174 in Hirtle, Frank (eds.), \emph{Spatial Information Theory}, Springer LNCS \textbf{1329} (1997). \item [[Marshall Stone|M. H. Stone]], \emph{Topological representation of distributive lattices and Brouwerian logics} , Cas. Mat. Fys. \textbf{67} (1937) pp.1-25. (\href{http://dml.cz/bitstream/handle/10338.dmlcz/124080/CasPestMatFys_067-1938-1_1.pdf}{pdf}) \item F. Wolter, \emph{On logics with coimplication} , J. Phil. Logic \textbf{27} (1998) pp.353-387. (\href{http://lips.informatik.uni-leipzig.de/files/1998-24.pdf}{draft}) \end{itemize} \end{document}