\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{co-Heyting boundary} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{remark}{Remark}\dotfill \pageref*{remark} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak [[!redirects coHeyting boundary]] [[!redirects Co-Heyting boundary]] [[!redirects boundary operator]] \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In a [[co-Heyting algebra]] it is possible to define an equivalent to the [[boundary]] operation in [[topology]]. In applications this affords an intrinsic view of [[mereology]] without consideration of the embedding of bodies into an ambient space. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $a$ be an element of a [[co-Heyting algebra]] $L$ with subtraction $\backslash$ and [[co-Heyting negation]] $\sim$. The \textbf{(co-Heyting) boundary} of $a$ is defined as $\partial a :=a\wedge\sim a$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{quote}% \end{quote} \begin{itemize}% \item $\partial (a\wedge b) = (\partial a \wedge b)\vee (a\wedge\partial b)\quad$. (\textbf{Leibniz rule}) \item $\partial (a\vee b)\vee\partial (a\wedge b) =\partial a\vee\partial b\quad$. \item The boundaries $x=\partial a$ can be characterized as those $x$ with $\partial x = x$ (in particular, $\partial^2=\partial$), or, alternatively, those $x$ with $\sim x=1$, showing that boundary parts are precisely the (intuitively) \textbf{thin parts}. \item Every part is the sum of its \emph{regular core} and its boundary: $a=\sim\sim a\vee\partial a$. This suggests to view $\partial a$ as the \emph{irregular} part of $a$. \end{itemize} \hypertarget{remark}{}\subsection*{{Remark}}\label{remark} As the lattice of [[subtopos|subtoposes]] of a given [[topos]] $\mathcal{E}$ comes naturally with a co-Heyting structure it becomes (in principle) possible to define the boundary $\partial\mathcal{A}$ of a subtopos $\mathcal{A}$ in this lattice and then in turn the boundary $\partial T'$ of the [[geometric theory]] $T'$ that $\mathcal{A}$ [[classifying topos|classifies]] which is an extension of the theory $T$ classified by $\mathcal{E}$ (\hyperlink{Law91a}{Lawvere 1991}, \hyperlink{Cara09}{Caramello 2009}).\footnote{The boundary operation is one in Lawvere's arsenal of (mereological) tools for the study of logical theories in the context of a topos and its subtoposes (besides e.g. the [[Aufhebung|Aufhebungs relation]]). For a more complete picture of the toolbox see \hyperlink{Law02}{Lawvere (2002)}.} When a subtopos $\mathcal{A}$ is complemented in the lattice of subtoposes, as occurs e.g. for [[open subtopos|open]], [[closed subtopos|closed]] or [[locally closed subtopos|locally closed]] subtoposes, its boundary vanishes: $\partial\mathcal{A}=0$ since in a co-Heyting algebra the complement $\neg a$ necessarily coincides with $\sim a$ (cf. at [[co-Heyting negation]]). \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[boundary]] \item [[co-Heyting negation]] \item [[co-Heyting algebra]] \item [[Heyting algebra]] \item [[Heyting category]] \item [[mereology]] \item [[subtopos]] \item [[Aufhebung]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Closed boundaries of subtoposes are defined in an exercise of \hyperlink{SGA4}{SGA4} (cf. at [[open subtopos]] for some of the details). The concept for co-Heyting algebras seems to stem from Lawvere (\hyperlink{Law76}{1976},\hyperlink{Law86}{1986}, \hyperlink{Law91a}{1991}) although the 1927 \hyperlink{Zar27}{article of M. Zarycki} already studies properties and axiomatic potential of the boundary operator in topology. \hyperlink{RRZ04}{La Palme Reyes, Reyes\&Zolfaghari (2004)} has an introductory exposition in the context of bi-Heyting algebras. For boundaries of geometric theories \hyperlink{Cara09}{Caramello (2009)} is essential reading although they don't appear there explicitly. For mereological applications of the concept see \hyperlink{Law86}{Lawvere (1986)}, \hyperlink{SW97}{Stell\&Worboys (1997)}, \hyperlink{Pagl09}{Pagliani (2009)} and \hyperlink{Mor13}{Mormann (2013)}. \begin{itemize}% \item [[M. Artin]], [[A. Grothendieck]], [[J. L. Verdier]], \emph{Th\'e{}orie des Topos et Cohomologie Etale des Sch\'e{}mas ([[SGA4]])}, LNM \textbf{269} Springer Heidelberg 1972. (expos\'e{} IV, exercise 9.4.8, pp.461-462) \item [[Olivia Caramello|O. Caramello]], \emph{Lattices of theories} , arXiv:0905.0299v1 (2009). (\href{http://arxiv.org/pdf/0905.0299v1}{pdf}) \item [[G. M. Kelly]], F. W. Lawvere, \emph{On the Complete Lattice of Essential Localizations} , Bull.Soc.Math. de Belgique \textbf{XLI} (1989) pp.261-299. \item C. Kennett, [[Emily Riehl|E. Riehl]], M. Roy, M. Zaks, \emph{Levels in the toposes of simplicial sets and cubical sets} , JPAA \textbf{215} no.5 (2011) pp.949-961. (\href{http://arxiv.org/abs/1003.5944}{preprint}) \item M. La Palme Reyes, [[Gonzalo E. Reyes|G. E. Reyes]], H. Zolfaghari, \emph{Generic Figures and their Glueings} , Polimetrica Milano 2004. \item [[William Lawvere]], \emph{Variable Quantities and Variable Structures in Topoi} , pp.101-131 in Heller, Tierney (eds.), \emph{Algebra, Topology and Category Theory: a Collection of Papers in Honor of Samuel Eilenberg} , Academic Press New York 1976. \item [[William Lawvere|F. W. Lawvere]], \emph{Introduction} , pp.1-16 in \emph{Categories in Continuum Physics} , Springer LNM \textbf{1174} 1986. \item F. W. Lawvere, \emph{Intrinsic Co-Heyting Boundaries and the Leibniz Rule in Certain Toposes} , pp.279-281 in Springer LNM \textbf{1488} (1991). \item F. W. Lawvere, \emph{Tools for the Advancement of Objective Logic: Closed Categories and Toposes}, pp.43-56 in: J. Macnamara, G. E. Reyes (eds.), \emph{The Logical Foundations of Cognition} , Oxford UP 1994. \item F. W. Lawvere, \emph{Linearization of graphic toposes via Coxeter groups} , JPAA \textbf{168} (2002) pp.425-436. \item [[Matías Menni|M. Menni]], C. Smith, \emph{Modes of Adjointness} , J. Philos. Logic \textbf{43} no.3-4 (2014) pp.365-391. \item T. Mormann, \emph{Heyting Mereology as a Framework for Spatial Reasoning} , Axiomathes \textbf{23} no.1 (2013) pp.237-264. (\href{http://philpapers.org/go.pl?id=MORCMA-3&proxyId=&u=http%3A%2F%2Fphilpapers.org%2Farchive%2FMORCMA-3.pdf}{draft}) \item P. Pagliani, \emph{Intrinsic co-Heyting boundaries and information incompleteness in Rough Set Analysis} , pp.123-130 in Polkowski, Skowron (eds.), \emph{RSCTC 1998} , Springer LNCS \textbf{1424} (2009). \item M. van Lambalgen, \emph{Logical constructions suggested by vision} , Proceedings of ITALLC98, CLSI 2000. (\href{http://staff.science.uva.nl/~michiell/docs/ITALLCCSLI.pdf}{draft}) \item C. Rauszer, \emph{Semi-Boolean algebras and their applications to intuitionistic logic with dual operations}, Fund. Math. \textbf{83} no.3 (1974) pp.219-249. (\href{http://matwbn.icm.edu.pl/ksiazki/fm/fm83/fm83120.pdf}{pdf}) \item [[Gonzalo E. Reyes|G. E. Reyes]], H. Zolfaghari, \emph{Bi-Heyting Algebras, Toposes and Modalities} , J. Phi. Logic \textbf{25} (1996) pp.25-43. \item J.G. Stell, M.F. Worboys, \emph{The algebraic structure of sets of regions} , pp.163-174 in Hirtle, Frank (eds.), \emph{Spatial Information Theory}, Springer LNCS \textbf{1329} (1997). \item M. Zarycki, \emph{Quelque notions fondamentales de l'Analysis Situs au point de vue de l'Alg\`e{}bre de la Logique} , Fund. Math. \textbf{IX} (1927) pp.3-15. (\href{http://matwbn.icm.edu.pl/ksiazki/fm/fm9/fm912.pdf}{pdf}) \item H. Zolfaghari, \emph{Topos et Modalit\'e{}s} , Th\`e{}se de doctorat Universit\'e{} de Montr\'e{}al 1991. \end{itemize} \end{document}