\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{co-Heyting negation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remark}{Remark}\dotfill \pageref*{remark} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak [[!redirects coHeyting negation]] [[!redirects Co-Heyting negation]] [[!redirects supplement]] [[!redirects bi-Heyting negation]] [[!redirects Brouwerian negation]] \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In a [[co-Heyting algebra]] it is possible to define a [[negation|negation operator]] $\sim$ which validates the \emph{law of excluded middle} but invalidates the \emph{law of non-contradiction} dual to the negation in a [[Heyting algebra]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $a$ be an element of a [[co-Heyting algebra]] $L$ with subtraction $\backslash$. The \textbf{co-Heyting negation} of $a$ , called \emph{non a} (Lawvere 1991) or the \emph{supplement} of $a$, is defined as $\sim a:=1\backslash a$. \hypertarget{remark}{}\subsection*{{Remark}}\label{remark} A [[co-Heyting algebra|bi-Heyting algebra]] is naturally equipped with two negation operators: the Heyting negation $\neg$ and the co-Heyting supplement $\sim$. Both coincide in a Boolean algebra considered as a bi-Heyting algebra. In applications, such co-occuring pairs of negation operators $\neg$ and $\sim$ are the most interesting cases as their combination give rise to [[adjoint modalities]] e.g. in mereology they yield \emph{thickened boundaries} (Stell\&Worboys 1997). Beside [[mereology]] they have found applications in [[linguistics]], [[intuitionistic logic]] and [[physics]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item $\sim a$ minimally supplements $a$ to truth in the sense that $\sim a$ is the least $x$ with $a\vee x=1$. This follows from the adjointness of $\backslash$ which unwinds as $\sim a\leq x$ iff $1=a\vee x$. \item $\sim 1=0$ and $\sim 0= 1$. \item $\sim$ can be used to define the [[co-Heyting boundary|co-Heyting boundary operator]] $\partial :L\to L$ by $\partial a:=a\wedge\sim a$. That $\partial a$ is not necessary trivial is dual to the non-validity of the \emph{tertium non datur} for general Heyting algebras and already points to the utility of the co-Heyting negation for [[paraconsistent logic]]. \item The co-Heyting supplement satisfies the dual \textbf{de Morgan rule} $\sim (a\wedge b)=(\sim a)\vee(\sim b)$, but not $\sim (a\vee b) = (\sim a)\wedge (\sim b)$ in general. \item For $a\in L$ define its \textbf{core} as $\sim\sim a$. Then $a=\partial a\vee(\sim\sim a)$. Call $a$ with $a=\sim\sim a$ \textbf{regular}. Lawvere (1986) proposes in the vein of classical mereology e.g. Tarski 1927 on regions as regular open sets, to consider only regular subbodies as bodies in the full sense. \item Suppose the element $a$ of a co-Heyting algebra has a [[complement]] $x$ i.e. $a\vee x = 1$ and $a\wedge x = 0$, then the complement $x$ coincides with $\sim a$. Because from $a\vee x=1$ follows $\sim a\leq x$ since $\sim a$ is the least element with this property; conversely, $\sim a=\sim a\vee (a\wedge x)=(\sim a\vee a)\wedge (\sim a\vee x)=\sim a\vee x$ whence $x\leq \sim a$. \item A complemented element is obviously regular. Conversely, a regular element $a$ is complemented since $0=\sim 1=\sim (a\vee\sim a)=(\sim a )\wedge (\sim\sim a)=\sim a\wedge a$. \item In a bi-Heyting algebra: $\neg a=\neg a\wedge 1=\neg a\wedge (a\vee\sim a)=(\neg a\wedge a)\vee (\neg a\wedge \sim a)= 0\vee (\neg a\wedge\sim a)=\neg a\wedge\sim a$ hence $\neg a\leq\sim a$ and we see that $\neg$ is more strongly negative than $\sim$. \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[co-Heyting boundary]] \item [[co-Heyting algebra]] \item [[negation]] \item [[Heyting algebra]] \item [[Heyting category]] \item [[mereology]] \item [[adjoint modality]] \item [[paraconsistent logic]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Andreas Döring|A. Döring]], \emph{Topos-based Logic for Quantum Systems and Bi-Heyting Algebras} , arXiv:1202.2750 (2013). (\href{http://arxiv.org/pdf/1202.2750.pdf}{pdf}) \item Y. Gauthier, \emph{A Theory of Local Negation: The Model and some Applications} , Arch. Math. Logik \textbf{25} (1985) pp.127-143. (\href{http://gdz.sub.uni-goettingen.de/dms/load/pdf/?PPN=GDZPPN002045923}{gdz}) \item [[William Lawvere|F. W. Lawvere]], \emph{Introduction} , pp.1-16 in Lawvere, Schanuel (eds.), \emph{Categories in Continuum Physics} , LNM \textbf{1174} Springer Heidelberg 1986. \item F. W. Lawvere, \emph{Intrinsic Co-Heyting Boundaries and the Leibniz Rule in Certain Toposes} , pp.279-281 in Springer LNM \textbf{1488} (1991). \item M. La Palme Reyes, J. Macnamara, [[Gonzalo E. Reyes|G. E. Reyes]], H. Zolfaghari, \emph{The non-Boolean logic of natural language negation} , Phil. Math. \textbf{2} no.1 (1994) pp.45-68. \item M. La Palme Reyes, J. Macnamara, [[Gonzalo E. Reyes|G. E. Reyes]], H. Zolfaghari, \emph{Models for non-Boolean negation in natural languages based on aspect analysis} , pp.241-260 in Gabbay, Wansing (eds.), \emph{What is Negation?}, Kluwer Dordrecht 1999. \item M. La Palme Reyes, [[Gonzalo E. Reyes|G. E. Reyes]], H. Zolfaghari, \emph{Generic Figures and their Glueings} , Polimetrica Milano 2004. \item [[Matías Menni|M. Menni]], C. Smith, \emph{Modes of Adjointness} , J. Philos. Logic \textbf{43} no.3-4 (2014) pp.365-391. \item T. Mormann, \emph{Heyting Mereology as a Framework for Spatial Reasoning} , Axiomathes \textbf{23} no.1 (2013) pp.237-264. (\href{http://philpapers.org/go.pl?id=MORCMA-3&proxyId=&u=http%3A%2F%2Fphilpapers.org%2Farchive%2FMORCMA-3.pdf}{draft}) \item C. Rauszer, \emph{Semi-Boolean algebras and their applications to intuitionistic logic with dual operations}, Fund. Math. \textbf{83} no.3 (1974) pp.219-249. (\href{http://matwbn.icm.edu.pl/ksiazki/fm/fm83/fm83120.pdf}{pdf}) \item [[Gonzalo E. Reyes|G. E. Reyes]], H. Zolfaghari, \emph{Bi-Heyting Algebras, Toposes and Modalities} , J. Phi. Logic \textbf{25} (1996) pp.25-43. \item J.G. Stell, M.F. Worboys, \emph{The algebraic structure of sets of regions} , pp.163-174 in Hirtle, Frank (eds.), \emph{Spatial Information Theory}, Springer LNCS \textbf{1329} (1997). \item H. Wansing, \emph{Negation} , pp.415-436 in Goble (ed.), \emph{The Blackwell Guide to Philosophical Logic} , Blackwell Oxford 2001. \end{itemize} \end{document}