\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{co-Yoneda lemma} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{yoneda_lemma}{}\paragraph*{{Yoneda lemma}}\label{yoneda_lemma} [[!include Yoneda lemma - contents]] \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{EveryPresheafIsAColimitOfRepresentables}{Every presheaf is a colimit of representables}\dotfill \pageref*{EveryPresheafIsAColimitOfRepresentables} \linebreak \noindent\hyperlink{MacLanesCoYonedaLemma}{MacLane's co-Yoneda lemma}\dotfill \pageref*{MacLanesCoYonedaLemma} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What is sometimes called the \emph{co-Yoneda lemma} is a basic fact about [[presheaves]] (a basic fact of [[topos theory]]): it says that every [[presheaf]] is a [[colimit]] of [[representable functor|representables]] and more precisely that it is the ``colimit over itself of all the representables contained in it''. One might think of this as related by [[duality]] to the [[Yoneda lemma]], hence the name. \hypertarget{EveryPresheafIsAColimitOfRepresentables}{}\subsection*{{Every presheaf is a colimit of representables}}\label{EveryPresheafIsAColimitOfRepresentables} Throughout, let \begin{itemize}% \item $V$ be a [[closed monoidal category|closed]] [[symmetric monoidal category]] (for instance $V =$ [[Set]] with its [[Cartesian product]]); \item $\mathcal{C}$ a [[small category|small]] $V$-[[enriched category]]. \end{itemize} For $c,d \in Obj(\mathcal{V})$ two objects, we write $\mathcal{C}(c,d) \in V$ for the [[hom-object]]. \begin{remark} \label{}\hypertarget{}{} \textbf{([[Yoneda reduction]])} Recall that the ([[enriched Yoneda lemma|enriched]]) [[Yoneda lemma]] says that for $F \colon \mathcal{C}^{op} \to V$ a $V$-[[enriched functor]] out of the [[opposite category]] of $\mathcal{C}$, hence a $V$-valued [[presheaf]] on $\mathcal{C}$ and $c \in \mathcal{C}$ an [[object]] of $\mathcal{C}$, there is a [[natural isomorphism]] in $V$ \begin{displaymath} [\mathcal{C}^{op},V](\mathcal{C}(-,c), F) \simeq F(c) \,, \end{displaymath} where on the left we have the [[hom-object]] in the [[enriched functor category]] between the [[representable functor|functor represented]] by $c$ and the given functor $F$. Using the expression of these hom-objects on the left as \emph{[[ends]]}, this reads \begin{displaymath} \int_{c' \in \mathcal{C}} V(\mathcal{C}(c',c), F(c')) \simeq F(c) \,. \end{displaymath} In this form the Yoneda lemma is also referred to as \emph{[[Yoneda reduction]]}. \end{remark} Under [[duality|abstract duality]] an [[end]] turns into a [[coend]], so a co-Yoneda lemma ought to be a similarly fundamental expression for $F(c)$ in terms of a [[coend]]. The natural candidate is the statement that: \begin{prop} \label{coYonedaLemma}\hypertarget{coYonedaLemma}{} Every [[presheaf]] $F$ is a [[colimit]] of [[representable functor|representables]], in that \begin{displaymath} F(c) \simeq \int^{c' \in C} \mathcal{C}(c,c')\otimes F(c') \end{displaymath} hence \begin{displaymath} F(-) \simeq \int^{c' \in \mathcal{C}} Y(c')\otimes F(c') \,, \end{displaymath} where $Y$ denotes the [[Yoneda embedding]]. In [[module]]-language, using the [[tensor product of functors]], this reads \begin{displaymath} F(c) \simeq \mathcal{C}(c,-)\otimes_{\mathcal{C}} F \,. \end{displaymath} Yet another way to state this is as a [[colimit]] over the [[comma category]] $(Y,F)$, for $Y$ the [[Yoneda embedding]]: \begin{displaymath} F \simeq colim_{(U \to F) \in (Y,F)} Y(U) \,. \end{displaymath} \end{prop} This statement we call the \textbf{co-Yoneda lemma}. \begin{proof} To show that a presheaf $F \colon \mathcal{C}^{op} \to V$ is canonically presented as a colimit of representables, we exhibit a natural isomorphism \begin{displaymath} \int^{c} F(c) \otimes \mathcal{C}(-, c) \;\cong\; F \end{displaymath} By the definition of the [[coend]], maps \begin{displaymath} \int^c F(c) \times \mathcal{C}(-, c) \to G(-) \end{displaymath} are in [[natural bijection]] with families of maps \begin{displaymath} F(c) \otimes \mathcal{C}(d, c) \to G(d) \end{displaymath} [[extranatural transformation|extranatural]] in $c$ and [[natural transformation|natural]] in $d$. Those are in natural bijection with families of maps \begin{displaymath} F(c) \to V(\mathcal{C}(d, c), G(d)) \end{displaymath} natural in $c$ and extranatural in $d$. These are in natural bijection with families of maps \begin{displaymath} F(c) \to Nat(\mathcal{C}(-, c), G) \cong G(c) \end{displaymath} (natural in $c$), where the isomorphism is by the Yoneda lemma. Thus we have exhibited a natural isomorphism \begin{displaymath} Nat(\int^c F(c) \times \mathcal{C}(-, c), G) \cong Nat(F, G) \end{displaymath} (natural in $G$). By Yoneda again, this gives \begin{displaymath} \int^c F(c) \times \mathcal{C}(-, c) \cong F \,. \end{displaymath} \end{proof} \begin{remark} \label{}\hypertarget{}{} The statement of the [[co-Yoneda lemma]] in prop. \ref{coYonedaLemma} is a kind of [[categorification]] of the following statement in [[analysis]] (whence the notation with the integral signs): For $X$ a [[topological space]], $f \colon X \to\mathbb{R}$ a [[continuous function]] and $\delta(-,x_0)$ denoting the [[Dirac distribution]], then \begin{displaymath} \int_{x \in X} \delta(x,x_0) f(x) = f(x_0) \,. \end{displaymath} \end{remark} \begin{remark} \label{}\hypertarget{}{} If one follows the Yoneda-lemma argument at the end of the proof of prop. \ref{coYonedaLemma}, one arrives at the explicit isomorphism \begin{displaymath} \int^c F(c) \times \mathcal{C}(-, c) \to F \,. \end{displaymath} Namely, it corresponds to the family of maps \begin{displaymath} F(c) \times \mathcal{C}(d, c) \to F(d) \end{displaymath} (extranatural in $c$ and natural in $d$) which in turn corresponds to the natural family \begin{displaymath} \mathcal{C}(d, c) \to \hom(F(c), F(d)) \end{displaymath} associated with the structure of the functor $F \colon \mathcal{C}^{op} \to V$. \end{remark} \begin{example} \label{CoYonedaInSetViaCoequalizer}\hypertarget{CoYonedaInSetViaCoequalizer}{} Let $V =$ [[Set]], and recall the definition of the [[coend]] as a [[coequalizer]] \begin{displaymath} \underset{c,d \in \mathcal{C})}{\coprod} \mathcal{C}(c,d) \times \mathcal{C}(c_0,c) \times F(d) \underoverset {\underset{\underset{c,d}{\sqcup} \rho_{(d,c)}(c) }{\longrightarrow}} {\overset{\underset{c,d}{\sqcup} \rho_{(c,d)}(d) }{\longrightarrow}} {\phantom{AAAAAAAA}} \underset{c \in \mathcal{C}}{\coprod} \mathcal{C}(c_0,c) \times F(c) \overset{coeq}{\longrightarrow} \overset{c\in \mathcal{C}}{\int} \mathcal{C}(c_0,c) \times F(c) \,. \end{displaymath} This says that the coend is the set of [[equivalence classes]] of [[pairs]] \begin{displaymath} ( c_0 \overset{}{\to} c,\; x \in F(c) ) \,, \end{displaymath} where two such pairs \begin{displaymath} ( c_0 \overset{f}{\to} c,\; x \in F(c) ) \,,\;\;\;\; ( c_0 \overset{g}{\to} d,\; y \in F(d) ) \end{displaymath} are regarded as equivalent if there exists \begin{displaymath} c \overset{\phi}{\to} d \end{displaymath} such that \begin{displaymath} g = \phi \circ f \,, \;\;\;\;\;and\;\;\;\;\; x = \phi^\ast(y) \,. \end{displaymath} (Because then the two pairs are the two images of the pair $(f,y)$ under the two morphisms being coequalized.) But now considering the case that $c = c_0$ and $f = id_{c_0}$, so that $g= \phi$ shows that any pair \begin{displaymath} ( c_0 \overset{\phi}{\to} d, \; y \in F(d)) \end{displaymath} is identified, in the coequalizer, with the pair \begin{displaymath} (id_{c_0},\; \phi^\ast(y) \in F(c_0)) \,, \end{displaymath} hence with $\phi^\ast(y)\in F(c_0)$, and that this coequalizing operation is the action \begin{displaymath} Hom(c_0,d)\times F(d)\longrightarrow F(c_0) \end{displaymath} of morphisms on elements of the presheaf by pullback. \end{example} \hypertarget{MacLanesCoYonedaLemma}{}\subsection*{{MacLane's co-Yoneda lemma}}\label{MacLanesCoYonedaLemma} In a brief uncommented exercise on \hyperlink{MacLane}{MacLane, p. 62}\newline the following statement, which is attributed to Kan, is called the \textbf{co-Yoneda lemma}. For $D$ a [[category]], [[Set]] the [[category]] of [[set]]s, $K : D \to Set$ a [[functor]], let $(* \darr K)$ be the [[comma category]] of elements $x \in K d$, let $\Pi: (* \darr K) \to D$ be the projection $(x \in K d) \mapsto d$ and let for each $a \in D$ the functor $\Delta_a: (* \darr K) \to D$ be the diagonal functor sending everything to the constant value $a$. The \textbf{co-Yoneda lemma in the sense of Kan/MacLane} is the statement that there is a [[natural isomorphism]] of [[functor category|functor categories]] \begin{displaymath} [D,Set](K, D(a, -)) \cong [(*\darr K), D](\Delta_a, \Pi). \end{displaymath} Here is an outline of an explicit proof: \begin{proof} A natural transformation $\phi: K \to D(a, -)$ assigns to each element $x \in K c$ an element $\phi_c(x) \in D(a, c)$, i.e., an arrow $\phi_c(x): a \to c$. We define a corresponding transformation $\psi: \Delta_a \to \Pi$ which assigns to each object $(c, x \in K c)$ in $(*\darr K)$ the morphism $\phi_c(x): a \to c = \Pi(c, x)$. It is easy to check that the naturality condition on $\phi$ corresponds to the naturality condition on $\psi$, and that the correspondence is bijective. \end{proof} Here is a more conceptual proof in terms of [[comma categories]]: \begin{proof} [[Set]] classifies discrete fibrations, in the sense that a functor $G : D \to Set$ classifies the discrete [[fibration]] \begin{displaymath} Q : \Pi_G : El(G) \to D \end{displaymath} and natural transformations $\alpha : G \to F$ correspond to maps of fibrations \begin{displaymath} El(G) \to El(f) \end{displaymath} i.e. functor which commute on the nose with the projections $\Pi_G$, $\Pi_F$ to the base category $D$). This applies in particular to $F = hom(a,-)$. Notice the [[category of elements]] $El(hom(a,-))$ is the co-slice $(a \downarrow D)$, with its usual projection $\Pi$ to $D$. However, the [[comma category]] $(a \downarrow D)$ is the ``lax pullback'' (really, the [[comma object]], the discussion at [[2-limit]]) appearing in \begin{displaymath} \itexarray{ (a \downarrow D) &\stackrel{\Pi}{\to}& D \\ \downarrow &\Uparrow& \downarrow^{Id} \\ * &\stackrel{a}{\to}& D } \end{displaymath} and so a fibration map $El(G) \to (a \downarrow D)$ corresponds exactly to a lax square \begin{displaymath} \itexarray{ El(G) &\stackrel{\Pi_G}{\to}& D \\ \downarrow &\Uparrow& \downarrow^{Id} \\ * &\stackrel{a}{\to}& D } \,. \end{displaymath} This yields the co-Yoneda lemma in the sense of MacLane's exercise. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} For enrichment over $V = Top^{\ast/}_{cg}$ ([[pointed topological spaces|pointed]] [[compactly generated topological spaces]]) the co-Yoneda lemma in the sense of \hyperlink{EveryPresheafIsAColimitOfRepresentables}{every presheaf is a colimit of representables} appears for instance as \begin{itemize}% \item [[Michael Mandell]], [[Peter May]], [[Stefan Schwede]], [[Brooke Shipley]], lemma 1.6 of \emph{[[Model categories of diagram spectra]]}, Proceedings London Mathematical Society Volume 82, Issue 2, 2000 (\href{http://www.math.uchicago.edu/~may/PAPERS/mmssLMSDec30.pdf}{pdf}, \href{http://plms.oxfordjournals.org/content/82/2/441.short?rss=1&ssource=mfc}{publisher}) \end{itemize} The \hyperlink{MacLanesCoYonedaLemma}{co-Yoneda lemma in the sense of MacLane} appears as a brief uncommented exercise on p. 63 of \begin{itemize}% \item [[Saunders MacLane]], \emph{[[Categories Work|Categories for the Working Mathematician]]}, \end{itemize} where it is attributed to [[Daniel Kan]]. [[!redirects Coyoneda lemma]] [[!redirects coYoneda lemma]] [[!redirects co-yoneda lemma]] [[!redirects coyoneda lemma]] [[!redirects enriched co-Yoneda lemma]] \end{document}