\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{coalgebra for an endofunctor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{coalgebras_for_endofunctors_on_}{Coalgebras for endofunctors on $Set$}\dotfill \pageref*{coalgebras_for_endofunctors_on_} \linebreak \noindent\hyperlink{RealLine}{The real line as a terminal coalgebra}\dotfill \pageref*{RealLine} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{coalgebra over an endofunctor} is like a [[coalgebra over a comonad]], but without a notion of [[associativity]]. The concept plays a role in [[computer science]] for models of state-based [[computation]] (see also [[monad (in computer science)]]). The concept of the [[terminal coalgebra of an endofunctor]] is a way of encoding [[coinductive types]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} For a [[category]] $C$ and [[endofunctor]] $F$, a \textbf{[[coalgebra]] of} $F$ is an [[object]] $X$ in $C$ together with a [[morphism]] $\alpha: X \to F(X)$. Given two coalgebras $(x, \eta: x \to F x)$, $(y, \theta: y \to F y)$, a coalgebra [[homomorphism]] is a [[morphism]] $f: x \to y$ which respects the coalgebra structures: \begin{displaymath} \theta \circ f = F(f) \circ \eta \end{displaymath} \end{defn} (The object $X$ is sometimes called the \textbf{carrier} of the coalgebra.) \begin{remark} \label{}\hypertarget{}{} The dual concept is an [[algebra for an endofunctor]]. Both [[algebras]] and coalgebras for endofunctors on $C$ are special cases of [[algebra for a C-C bimodule|algebras for C-C bimodules]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} If $F$ is equipped with the structure of a [[monad]], then a coalgebra for it is equivalently an [[endomorphism]] in the corresponding [[Kleisli category]]. In this case the canonical [[monoidal category]] structure on endomorphisms induces a [[tensor product]] on those coalgebras. \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{coalgebras_for_endofunctors_on_}{}\subsubsection*{{Coalgebras for endofunctors on $Set$}}\label{coalgebras_for_endofunctors_on_} Each of the following examples is of the form $X\to F(X)$, (description of endofunctor $F\colon Set\to Set$) : (description of coalgebra). Where it appears, $A$ is a given fixed set. \begin{itemize}% \item $X \to D(X)$, the set of [[probability distributions]] on $X$: Markov chain on $X$. \item $X \to \mathcal{P}(X)$, the [[power set]] of $X$: binary relation on $X$, and also the simplest type of [[Kripke frames]]. \item $X \to X^A \times bool$, with $X^A$ the set of functions $A\to X$ and $bool = \{0,1\}$: [[deterministic automaton]]. \item $X \to \mathcal{P}(X)^A\times bool$: [[nondeterministic automaton]]. \item $X \to A \times X \times X$: labelled binary tree with labels from $A$. \item $X \to \mathcal{P}(A\times X)$: [[transition system|labelled transition system]] with labels from $A$. \end{itemize} See [[coalgebra]] for examples on categories of modules. \hypertarget{RealLine}{}\subsubsection*{{The real line as a terminal coalgebra}}\label{RealLine} Let $Pos$ be the category of [[poset]]s. Consider the endofunctor \begin{displaymath} F_1 : Pos \to Pos \end{displaymath} that acts by [[ordinal product]] with $\omega$ \begin{displaymath} F_1 : X \mapsto X \cdot \omega \,, \end{displaymath} where the right side is given the dictionary order, not the usual product order. \begin{uprop} The terminal coalgebra of $F_1$ is order isomorphic to the non-negative [[real line]] $\mathbb{R}^+$, with its standard order. \end{uprop} \begin{proof} This is theorem 5.1 in \begin{itemize}% \item D. Pavlovic, [[Vaughan Pratt]], \emph{On coalgebra of real numbers} (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.5204}{web}) \end{itemize} \end{proof} \begin{uprop} The real interval $[0, 1]$ may be characterized, as a [[topological space]], as the terminal coalgebra for the functor on two-[[pointed object|pointed]] topological spaces which takes a space $X$ to the space $X \vee X$. Here, $X \vee Y$, for $(X, x_-, x_+)$ and $(Y, y_-, y_+)$, is the disjoint union of $X$ and $Y$ with $x_+$ and $y_-$ identified, and $x_-$ and $y_+$ as the two base points. \end{uprop} \begin{proof} This is discussed in \begin{itemize}% \item [[Peter Freyd]], \href{http://www.mta.ca/~cat-dist/catlist/1999/realcoalg}{cat list} \end{itemize} More information may be found at [[coalgebra of the real interval]]. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[well-founded coalgebra]] \item [[algebra over a monad]], [[algebra over an endofunctor]], [[algebra over a profunctor]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Jiri Adamek]], \emph{\href{http://www.tac.mta.ca/tac/volumes/14/8/14-08abs.html}{Introduction to coalgebras}} , \emph{Theory and Applications of Categories}, Vol. 14 (2005), No. 8, 157-199. \end{itemize} There are connections between the theory of coalgebras and [[modal logic]] for which see \begin{itemize}% \item [[Bart Jacobs]], \emph{Introduction to Coalgebra. Towards Mathematics of States and Observations} (\href{http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf}{book pdf}, \href{http://cs.ioc.ee/ewscs/2011/jacobs/jacobs-slides.pdf}{slides}) \end{itemize} and also \begin{itemize}% \item Corina Cırstea, Alexander Kurz, [[Dirk Pattinson]], Lutz Schroder and Yde Venema, \emph{Modal Logics are Coalgebraic}, from the Computer Journal 2011, \href{http://users.cecs.anu.edu.au/~dpattinson/Publications/cj2011.pdf}{here}. \end{itemize} and with [[quantum mechanics]], for which see this and \begin{itemize}% \item [[Samson Abramsky]], \emph{Coalgebras, Chu Spaces, and Representations of Physical Systems} (\href{http://arxiv.org/abs/0910.3959}{arXiv:0910.3959}) \end{itemize} Here are two blog discussions of coalgebra theory: \begin{itemize}% \item [[David Corfield]], \emph{\href{http://golem.ph.utexas.edu/category/2008/11/coalgebraically_thinking.html}{\emph{Coalgebraically Thinking}}} \item [[David Corfield]], \emph{\href{http://golem.ph.utexas.edu/category/2008/12/the_status_of_coalgebra.html}{\emph{The Status of Coalgebra}}} \end{itemize} [[!redirects coalgebra of an endofunctor]] [[!redirects coalgebras of an endofunctor]] [[!redirects coalgebras of endofunctosr]] [[!redirects coalgebra for an endofunctor]] [[!redirects coalgebras for an endofunctor]] [[!redirects coalgebras for endofunctors]] [[!redirects coalgebra over an endofunctor]] [[!redirects coalgebras over an endofunctor]] [[!redirects coalgebras over endofunctors]] \end{document}