\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{coalgebra of the real interval} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{introduction}{Introduction}\dotfill \pageref*{introduction} \linebreak \noindent\hyperlink{coalgebraic_description_of_}{Coalgebraic description of $I$}\dotfill \pageref*{coalgebraic_description_of_} \linebreak \noindent\hyperlink{corecursively_defined_operations_on_}{Corecursively defined operations on $I$}\dotfill \pageref*{corecursively_defined_operations_on_} \linebreak \noindent\hyperlink{ordertheoretic_operations}{Order-theoretic operations}\dotfill \pageref*{ordertheoretic_operations} \linebreak \noindent\hyperlink{midpoint_operations}{Midpoint operations}\dotfill \pageref*{midpoint_operations} \linebreak \noindent\hyperlink{constructive_aspects}{Constructive aspects}\dotfill \pageref*{constructive_aspects} \linebreak \noindent\hyperlink{computational_aspects}{Computational aspects}\dotfill \pageref*{computational_aspects} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{introduction}{}\subsection*{{Introduction}}\label{introduction} This article is about structure on a closed interval of real numbers, generally taken to be $I = [0, 1]$, that is derivable from a [[coalgebra of an endofunctor|coalgebraic]] perspective. This topic was introduced by [[Peter Freyd]]. \hypertarget{coalgebraic_description_of_}{}\subsection*{{Coalgebraic description of $I$}}\label{coalgebraic_description_of_} For the moment we work [[classical mathematics|classically]], over the [[category of sets]]. A \emph{bipointed set} is a set equipped with two elements, that is a [[cospan]] of the form \begin{displaymath} \itexarray{ 1 & & & & 1 \\ & ^\mathllap{x_0} \searrow & & \swarrow^\mathrlap{x_1} & \\ & & X & & } \end{displaymath} where $x_0$ and $x_1$ might coincide. There is a [[monoidal category|monoidal product]] on $Cospan(1, 1)$ given by cospan composition (formed by taking [[pushouts]]); this monoidal product is denoted $\vee$. (Explicitly, $(X,x_0,x_1) \vee (Y,y_0,y_1)$ is $((X \uplus Y)/(x_1 \sim y_0), x_0, y_1)$.) The monoidal unit is a $1$-element set with its unique bipointed structure. The category of such cospans or bipointed sets is denoted $Cos$. Inside $Cos$ is the full subcategory of \emph{two-pointed} sets, where $x_0$ and $x_1$ are distinct. Let $Twop$ be the category of two-pointed sets. The monoidal product $\vee$ restricts to a functor \begin{displaymath} \vee \colon Twop \times Twop \to Twop \end{displaymath} and one can define the square \begin{displaymath} sq = (Twop \stackrel{\Delta}{\to} Twop \times Twop \stackrel{\vee}{\to} Twop) \end{displaymath} A \textbf{$sq$-coalgebra} is a two-pointed set $X$ together with a map $\xi: X \to X \vee X$. An example is given by $I = [0, 1]$, where $I \vee I$ is identified with the interval $[0, 2]$ and the coalgebra structure $I \to I \vee I$ is identified with multiplication by $2$, $[0, 1] \to [0, 2]$. This map will be denoted $\alpha$. \begin{utheorem} $(I, \alpha)$ is terminal in the category of $sq$-coalgebras. \end{utheorem} \hypertarget{corecursively_defined_operations_on_}{}\subsection*{{Corecursively defined operations on $I$}}\label{corecursively_defined_operations_on_} We now define a number of operations on $I$. For $0 \leq x \leq 1$, define ${x \uparrow} \coloneqq \min(2 x, 1)$ and ${x \downarrow} \coloneqq \max(2 x - 1, 0)$. These give unary operations on $I$ which can also be defined as maps in $Cos$ using the coalgebra structure $\alpha$: \begin{displaymath} I \stackrel{{(-) \uparrow}}{\to} I = (I \stackrel{\alpha}{\to} I \vee I \stackrel{I \vee !}{\to} I \vee 1 \cong I) \end{displaymath} \begin{displaymath} \, \end{displaymath} \begin{displaymath} I \stackrel{{(-) \downarrow}}{\to} I = (I \stackrel{\alpha}{\to} I \vee I \stackrel{! \vee I}{\to} 1 \vee I \cong I) \end{displaymath} We similarly define unary operations ${(-)\uparrow}$, ${(-) \downarrow}$ for any $sq$-coalgebra $(X, \xi)$. For any coalgebra $X$ and $x \in X$, either ${x \downarrow} = x_0$ or ${x \uparrow} = x_1$. Moreover, if $i_0 \colon X \to X \vee X$ and $i_1 \colon X \to X \vee X$ are the evident pushout inclusions, we have $\xi(x) = i_0({x \uparrow})$ if ${x \downarrow} = x_0$, and $\xi(x) = i_1({x \downarrow})$ if ${x \uparrow} = x_1$. This means that coalgebra structures can be recovered from algebraic structures consisting of two constants $x_0, x_1$ and two unary operations $\uparrow$, $\downarrow$, although we must consider a coherent but non-algebraic axiom \begin{displaymath} \vdash {x \uparrow} = x_1 or {x \downarrow} = x_0 \end{displaymath} \hypertarget{ordertheoretic_operations}{}\subsubsection*{{Order-theoretic operations}}\label{ordertheoretic_operations} Next, we define meet and join operations on $I$, making it a lattice, by exploiting corecursion. A slick corecursive definition of the order $\leq$ is that $x \leq y$ \begin{itemize}% \item if ${x \downarrow} = 0$ and ${x \uparrow} \leq {y \uparrow}$, or \item if ${y \uparrow} = 1$ and ${x \downarrow} \leq {y \downarrow}$. \end{itemize} If one prefers to work with operations, one could define the meet operation $\wedge \colon I \times I \to I$ by putting a suitable coalgebra structure on $I \times I$ and using terminality of the coalgebra $I$ to define $\wedge$ as a coalgebra map. A coalgebra structure \begin{displaymath} \xi \colon I \times I \to (I \times I) \vee (I \times I) \end{displaymath} which works is \begin{itemize}% \item $\xi(x, y) = i_0({x \uparrow}, {y \uparrow})$ if ${x \downarrow} = 0$ or ${y \downarrow} = 0$; \item $\xi(x, y) = i_1({x \downarrow}, {y \downarrow})$ if ${x \uparrow} = 1 = {y \uparrow}$. \end{itemize} \hypertarget{midpoint_operations}{}\subsubsection*{{Midpoint operations}}\label{midpoint_operations} The general midpoint operation is not as easy to construct as one might think, but to start with we do have operations which take the midpoint between a given point and an endpoint. Namely, the left midpoint operation is the unary operation defined by \begin{displaymath} l = (I \stackrel{i_0}{\to} I \vee I \stackrel{\alpha^{-1}}{\to} I) \end{displaymath} and the right midpoint operation is defined by \begin{displaymath} r = (I \stackrel{i_1}{\to} I \vee I \stackrel{\alpha^{-1}}{\to} I). \end{displaymath} \hypertarget{constructive_aspects}{}\subsection*{{Constructive aspects}}\label{constructive_aspects} There are two versions of this construction, classically equivalent, in [[constructive mathematics]], one of which produces the unit interval of [[MacNeille real numbers]], the other of which produces the unit interval of [[located Dedekind real numbers]]. Both start with $Cos$ (which is straightforward) but define $Twop$ differently, and the monoidal product $\vee$ is subtler. For the MacNeille real numbers, define $Twop_M$ in the most obvious way, \begin{displaymath} \neg\; x_0 = x_1 . \end{displaymath} For the Dedekind real numbers, define $Two_D$ by requiring \begin{displaymath} \forall x,\; \neg\; x = x_0 \;\vee\; \neg\; x = x_1 . \end{displaymath} (The two statements are equivalent assuming the classical [[de Morgan law]] $\neg(p \wedge q) \Rightarrow \neg{p} \vee \neg{q}$, but the latter is stronger in [[intuitionistic logic]].) In $Cos$, let $X \vee Y$ be a [[subset]] of $X \times Y$, with $(x,y) \in X \vee Y$ iff \begin{displaymath} (\neg\; x = x_1 \;\Rightarrow\; y = y_0) \;\wedge\; (\neg\; y = y_0 \;\Rightarrow\; x = x_1) . \end{displaymath} (A pushout can be constructed using $x = x_1 \;\vee\; y = y_0$ instead; this is stronger in intuitionistic logic but equivalent assuming [[excluded middle]]. If equality happens to be [[stable proposition|stable]] in $X$ and $Y$, then only the classical de Morgan law is needed to make this a pushout.) As in the classical case, this makes $Twop_M$ and $Twop_D$ into ``[[semigroup]]al'' categories ([[monoidal categories]] but without the monoidal unit), since the unit object (which exists in $Cos$ as the [[singleton]]) does not exist in $Twop_M$ or in $Twop_D$, but we can still define $sq_M$ and $sq_D$ and consider their coalgebras. As stated above, $[0,1]_M$ is the final coalgebra of $sq_M$, and $[0,1] = [0,1]_D$ is the final coalgebra of $sq_D$; both are equipped with $0$ and $1$. Another approach to the Dedekind real interval looks simpler from the perspective of [[constructive analysis]]. Start with $Set_\#$, the category of $T_0$ [[point–point apartness spaces]] and [[strongly extensional functions]] between them. (A point--point apartness space is a set equipped with an [[apartness relation]], that is a binary relation $\#$ satisfying properties [[de Morgan duality|dual]] to those of an equivalence relation; it is $T_0$ iff the apartness relation is [[tight relation|tight]]; and a function between such spaces is strongly extensional iff it reflects $#$.) On $Cos_\#$, let $X \vee Y$ be the subset of $X \times Y$ satisfying \begin{displaymath} (x \# x_1 \;\Rightarrow\; y = y_0) \;\wedge\; (y \# y_0 \;\Rightarrow\; x = x_1) . \end{displaymath} Define $Twop_\#$ by \begin{displaymath} x \# x_0 \;\vee\; x \# x_1 . \end{displaymath} Now defining $sq_\#$ on $Twop_\#$, its final coalgebra is again the Dedekind unit interval (equipped with its endpoints). \hypertarget{computational_aspects}{}\subsection*{{Computational aspects}}\label{computational_aspects} \ldots{} explain how the classical version corresponds to computation with (unsigned) binary digits \ldots{} the constructive (Dedekind) version corresponds to computation with signed binary digits \ldots{} \hypertarget{references}{}\subsection*{{References}}\label{references} The original development by Freyd is \begin{itemize}% \item [[Peter Freyd]], \emph{Real coalgebra}, post to the categories list, December 22, 1999 (\href{http://facultypages.ecc.edu/alsani/ct99-00%288-12%29/msg00039.html}{web}) \end{itemize} The constructive version is also due to Freyd: \begin{itemize}% \item [[Peter Freyd]], \emph{Reality Check}, post to the categories list, July 31, 2000 (\href{http://facultypages.ecc.edu/alsani/ct99-00%288-12%29/msg00200.html}{web}) \end{itemize} Freyd published 8 years later: \begin{itemize}% \item [[Peter Freyd]], \emph{Real Algebraic Analysis}, TAC \textbf{20} no.10 (2008) pp. 215--306. (\href{http://www.tac.mta.ca/tac/volumes/20/10/20-10abs.html}{web}) \end{itemize} There is also a complete development in the [[Elephant]]: \begin{itemize}% \item [[Peter Johnstone]], \emph{Sketches of an Elephant}, following 4.7.14. \end{itemize} [[!redirects real coalgebra]] [[!redirects coalgebra of the real interval]] [[!redirects coalgebra of the real numbers]] [[!redirects coalgebra of real numbers]] \end{document}