\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cobordism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToCohomotopy}{Relation to Cohomotopy}\dotfill \pageref*{RelationToCohomotopy} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An (oriented) \emph{cobordism} $\Sigma$ from an (oriented) [[smooth manifold]] $X_{in}$ to an (oriented) smooth manifold $X_{out}$ is a smooth [[manifold with boundary]] $\Sigma$ such that its [[boundary]] is the [[disjoint union]] \begin{displaymath} \partial \Sigma \simeq X_{in} \coprod X_{out} \end{displaymath} with induced [[orientation]] agreeing with the given one on $X_{in}$ and being the opposite of that of $X_{out}$. Hence by labelling disjoint components of the boundary of any [[manifold with boundary]] $\Sigma$ as either ``incoming'' or ``outgoing'', then $\Sigma$ becomes a cobordism from its incoming to its outgoing boundary components. (While $X_{in} \coprod X_{out}$ is the [[boundary]] of $\Sigma$, conversely $\Sigma$ is the ``co-boundary'' of $X_{in}\coprod X_{out}$. This is part of the reason for the ``co-'' in ``cobordism'', but sometimes one just says \emph{bordism}. The difference is more pronounced when distinguishing between [[bordism homology theory]] and [[cobordism cohomology theory]].) With a little bit of technical conditions on the boundary inclusions added, then $(n-1)$-dimensional manifolds with [[diffeomorphism]] classes of $n$-dimensional cobordisms between them form a [[category]] (a [[category of cobordisms]]) whose [[objects]] are the manifolds, whose [[morphisms]] are the cobordisms, and whose [[composition]] operation is the operation of gluing two cobordisms along a common boundary component. Such a [[category of cobordisms]] $Bord_n$ of some [[dimension]] $n$ is naturally a [[symmetric monoidal category]] $Bord_n^{\sqcup}$ with the [[tensor product]] being the [[disjoint union]] $\sqcup$ of manifolds. The [[connected components]] in this category are called \emph{cobordism classes} of manifolds. Under [[cartesian product]] and [[disjoint union]], these form what is called the [[cobordism ring]] in the given dimension. The study of these classes, hence of manifolds ``up to cobordisms'', is a central topic in [[algebraic topology]]. A central insight connecting [[algebraic topology]] with [[mathematical physics]] is that a [[strong monoidal functor]] on a [[category of cobordisms]] with values in something like the category [[Vect]] (with its standard [[tensor product of modules]]) may be thought of as a formalized incarnation of what in [[physics]] is called a [[topological quantum field theory]] \begin{displaymath} Z \colon Bord_n^\sqcup \longrightarrow Vect^\otimes \,. \end{displaymath} Here one thinks of a cobordism $\Sigma$ as a piece of [[spacetime]] (or [[worldvolume]]) of dimension $n$, and of the $(n-1)$-dimensional manifolds that this goes between as a piece of [[space]] (or [[brane]]). A functor $Z$ as above is then thought of as sending each $(n-1)$-dimensional space $X$ to its [[space of quantum states]] $Z(X)$ and each spacetime $\Sigma$ between $X_{in}$ and $X_{out}$ to a [[linear map]] $Z(\Sigma)\colon Z(X_{in}) \longrightarrow Z(X_{out})$. From the perspective of [[mathematics]], such a functor is a way to break up [[diffeomorphism]] [[invariants]] of [[closed manifolds]] of [[dimension]] $n$ into pieces and being able to reconstruct them from gluing of data associated to manifolds with $(n-1)$-dimensional boundary. If one considers [[manifolds with corners]] then there is a fairly evident refinement of the concept of cobordism that allows to further refine this process to gluing of [[extended cobordisms]] of any dimension $k$ going between [[extended cobordisms]] of dimension $k-1$. Such extended cobordisms of maximal dimension $n$ form a [[symmetric monoidal (infinity,n)-category]] called, naturally, the [[(infinity,n)-category of cobordisms]]. The [[cobordism hypothesis]] asserts that this is a most fundamental object in [[higher category theory]] and [[higher algebra]], namely that it is the \emph{[[free construction|free]]} [[symmetric monoidal (infinity,n)-category]] [[(infinity,n)-category with duals|with duals]]. The corresponding extended concept of [[topological quantum field theory]] is accordingly called [[extended TQFT]] or similar. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToCohomotopy}{}\subsubsection*{{Relation to Cohomotopy}}\label{RelationToCohomotopy} The [[Pontrjagin-Thom isomorphism]] says that assigning [[Cohomotopy charge]] identifies suitable [[cobordism classes]] of [[submanifolds]] or abstract [[manifolds]] with [[cocycles]] in [[Cohomotopy|unstable Cohomotopy]] (see \href{cohomotopy#RelationToCobordismGroup}{here}) or [[stable Cohomotopy]]. The following graphics illustrates the [[Cohomotopy charge map]] of the pair creation/annihilation cobordism for 0-dimensional [[submanifolds]]: \begin{quote}% graphics grabbed from \href{cohomotopy+charge#SatiSchreiber19}{SS 19} \end{quote} (See also at \emph{[[Cohomotopy charge]] -- \href{Cohomotopy+charge#ForChargedPoints}{For charged points}}.) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[h-cobordism]] \item [[cobordism theory]] \item [[cobordism group]], [[cobordism ring]] \item [[Thom spectrum]], [[Thom's theorem]] \item [[cobordism category]] \item [[(infinity,n)-category of cobordisms]], [[cobordism hypothesis]] \item [[cobordism cohomology theory]] \item [[extended cobordism]] \item [[B-bordism]] \item [[orbifold cobordism]] \item [[Lagrangian cobordism]] \item [[algebraic cobordism]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Robert Stong]], \emph{Notes on Cobordism theory}, 1968 (\href{http://pi.math.virginia.edu/StongConf/Stongbookcontents.pdf}{toc pdf}, \href{http://press.princeton.edu/titles/6465.html}{publisher page}) \item [[Stanley Kochmann]], section 1.5 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[John Francis]] (notes by [[Owen Gwilliam]]), \emph{\href{http://math.northwestern.edu/~jnkf/classes/mflds/}{Topology of manifolds}}, \emph{Lecture 2: Cobordism} (\href{http://math.northwestern.edu/~jnkf/classes/mflds/2cobordism.pdf}{pdf}) \item [[Manifold Atlas]], \emph{\href{http://www.map.mpim-bonn.mpg.de/Bordism}{Bordism}} \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Cobordism}{Cobordism}} \end{itemize} A relation to [[fixed point spaces]]: \begin{itemize}% \item Carlos Prieto, \emph{Fixed point theory and framed cobordism}, Topol. Methods Nonlinear Anal. Volume 21, Number 1 (2003), 155-169. (\href{https://projecteuclid.org/euclid.tmna/1475266278}{Euclid}) \end{itemize} [[!redirects cobordisms]] [[!redirects bordism]] [[!redirects bordisms]] [[!redirects cobordant manifold]] [[!redirects cobordant manifolds]] [[!redirects bordant manifold]] [[!redirects bordant manifolds]] [[!redirects cobordism class]] [[!redirects cobordism classes]] \end{document}