\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cocycle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{realizations_of_cocycles}{Realizations of cocycles}\dotfill \pageref*{realizations_of_cocycles} \linebreak \noindent\hyperlink{terminology}{Terminology}\dotfill \pageref*{terminology} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{CochainCocycles}{Cochain cocycles}\dotfill \pageref*{CochainCocycles} \linebreak \noindent\hyperlink{Classification}{Objects classified by cocycles}\dotfill \pageref*{Classification} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} From the [[nPOV]], a [[cohomology]] set $H(X,A)$ of cohomology classes \begin{enumerate}% \item on a [[domain]] [[object]] $X$ \item with [[coefficients]] in an [[object]] $A$ \item in an [[(∞,1)-topos]] $\mathbf{H}$ \end{enumerate} is the [[connected components]]/[[decategorification]] of \begin{itemize}% \item the [[derived hom space|hom ∞-groupoid]] $\mathbf{H}(X,A)$ -- the [[cocycle space]]. \end{itemize} The [[objects]] in this [[cocycle space]] [[∞-groupoid]] $\mathbf{H}(X,A)$ are called \textbf{cocycles}; the [[morphisms]] are called \emph{[[coboundaries]]}. For suitable choices of $\mathbf{H}$ this applies notably to cocycles in \begin{itemize}% \item general [[abelian sheaf cohomology]] \item general [[nonabelian cohomology]] \end{itemize} and in particular to \begin{itemize}% \item [[chain homology and cohomology|chain cohomology]] \item [[group cohomology]] \item [[nonabelian group cohomology]]. \end{itemize} It also encompasses variations such as cocycles in \begin{itemize}% \item [[equivariant cohomology]] \item [[twisted cohomology]] \item [[differential cohomology]]. \end{itemize} For a detailed discussion of this and how it relates to various familiar realizations of cocycles, see [[cohomology]] and the links provided there. \hypertarget{realizations_of_cocycles}{}\subsection*{{Realizations of cocycles}}\label{realizations_of_cocycles} The objects in the [[derived hom space|hom ∞-groupoid]] $\mathbf{H}(X,A)$ are often expressed in terms of various 1-categorical models for $\mathbf{H}$, such as a [[homotopical category]] $C$ equipped with \begin{itemize}% \item the extra structure of a [[calculus of fractions]], \item or with the structure of a [[category of fibrant objects]] \item or even with the full structure of a [[model category]]. \end{itemize} In all of these cases, cocycles $c$ on $X$ with coefficients in $A$ may be modeled by [[span]]s of the form \begin{displaymath} \itexarray{ X &\stackrel{\in FW}{\leftarrow}& \tilde X \to A } \end{displaymath} in the ordinary [[category]] $C$, where the morphism on the left is taken from a special class of morphisms (for instance from the class of acyclic fibrations in the case that $C$ is a [[category of fibrant objects]]). In each case the relevant [[hom-set]] in the [[homotopy category]] $H(X,A) = \pi_0 \mathbf{H}(X,A)$ is given by the collection of cocycles module an [[equivalence relation]] given by coboundaries. In formulas \begin{displaymath} H(X,A) = colim_{\tilde X \stackrel{\in FW}{\to} X} Hom_{\pi C}(X,A) \,. \end{displaymath} For details see the respective discussion at [[homotopy category]], [[calculus of fractions]] and [[category of fibrant objects]]. \hypertarget{terminology}{}\subsection*{{Terminology}}\label{terminology} In the existing literature on [[localization]]s, the spans $X \stackrel{\in FW}{\leftarrow} \tilde X \to X$ are often not called by a dedicated special term. On the other hand, in the existing literature that explicitly uses the term ``cocycle'', often more pedestrian definitions are used and it is not made explicit that morphisms in a [[homotopy category]] are being represented. An notable exception to this is the article \begin{itemize}% \item Jardine, \emph{Cocycle categories} (\href{http://www.math.uiuc.edu/K-theory/0782/}{web}) \end{itemize} that makes both the abstract concept and the terminology of cocycles explicit and manifest. The author is mainly motivated from the [[model structure on simplicial presheaves]] and its variants, which in particular models cocycles and cohomology of [[abelian sheaf cohomology]]. But more generally it models [[nonabelian cohomology]]. Notably when the underlying space is the point, it models ordinary [[chain homology and cohomology|chain cohomology]] as well as [[group cohomology]] and [[nonabelian group cohomology]]. Notice that this article chooses to work with the full structure of a [[model category]] but presents constructions for cocycles entirely analogous to and in fact inspired by those used in a [[category of fibrant objects]] or in one equipped with a [[calculus of fractions]]. The author emphasizes that he can give a definition where the left leg of the cocycle spans are not required to be acyclic fibrations, but can be any weak equivalences. But all this is just a technical question of how exactly to model a cocycle, not a question of principle of concept. For instance in this context every cocycle defined with respect to a weak equivalence over its domain is cohomologous to one defined with respect to an acyclic fibration over its domain. In the special case that the category $C$ is [[Cat]] equipped with the [[folk model structure on Cat]], cocycles out of acyclic fibrations -- which are [[k-surjective functor]]s for all $k$ in this case -- have been considered in \begin{itemize}% \item Makkai, \emph{\href{http://www.math.mcgill.ca/makkai/anafun/}{Avoiding the axiom of choice in general category theory}} . \end{itemize} There they are called \textbf{[[anafunctor]]s}. One could take this as a suggestion to find a dedicated term for spans as above and call generally such a span an \textbf{anamorphism}. An anamorphism would be effectively the same as a cocycle, but the term \emph{[[morphism]]} in it would amplify the nature of cocycles as morphisms. So \begin{itemize}% \item a \emph{cocycle} on $X$ with coefficients in $A$ \end{itemize} would correspond to \begin{itemize}% \item an \emph{anamorphism} from $X$ to $Y$. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{CochainCocycles}{}\subsubsection*{{Cochain cocycles}}\label{CochainCocycles} The archetypical example of a notion of cocycles is that of [[chain homology and cohomology|chain cohomology]]: a non-negatively graded [[chain complex]] $V_\bullet = (V_0 \stackrel{\partial_V}{\leftarrow} V_1 \stackrel{\partial_V}{\leftarrow} V_2 \stackrel{}{\leftarrow} \cdots)$ is given. An element $v \in V_n$ is a \textbf{chain}. A linear dual $\omega : V_n \to k$ on its elements is a \textbf{cochain}. The cochains arrange into the [[cochain complex]] $V^\bullet = (V^0 \stackrel{d_V}{\to} V^1 \to \stackrel{d_V}{\to} V^2 \to \cdots) := (V_0^* \stackrel{(\partial_V)^*}{\to} V_1^* \to \stackrel{(\partial_V)^*}{\to} V_2^* \to \cdots)$ A cochain $\omega \in V^n$ is a \textbf{cocycle} if it is closed with respect to the [[differential]] $d_V$ in that \begin{displaymath} d_V \omega = 0 \,. \end{displaymath} One sees that such cocycles are in bijection to [[morphism]]s of [[chain complex]]es \begin{displaymath} \omega : V_\bullet \to (\mathbf{B}^n k)_\bullet \,, \end{displaymath} where on the right we have the [[Eilenberg-MacLane object]] of the ground field $k$, which is the chain complex trivial everywhere except in degree $n$, where it is $k$: \begin{displaymath} \mathbf{B}^n k = (0 \leftarrow \cdots \leftarrow 0 \leftarrow k \leftarrow 0 \leftarrow \cdots) \,. \end{displaymath} By definition such a morphism is a collection of morphisms $\omega_r : V_r \to (\mathbf{B}^n k)_r$, of which by definition only $\omega_n \in V_n^* = V^n$ can be nontrivial. For the collection of these maps to be a morphism of chain complexes they have to make all squares in sight commute. The only nontrivial one in this case is the one \begin{displaymath} \itexarray{ V_{n+1} &\to& 0 \\ {}^{\mathllap{\partial_V}}\downarrow && \downarrow \\ V_n &\stackrel{\omega}{\to}& k } \,. \end{displaymath} Its commutativity means in formulas that \begin{displaymath} \omega \circ \partial_V = d_V \omega = 0 \,, \end{displaymath} which is the cocycle condition from above. In most cases the morphism $\omega : V_\bullet \to \mathbf{B}^n k$ defined this way is already a morphism in the relevant [[(∞,1)-category]] $\mathbf{H}_{Ch_\bullet}$ of chain complexes: this is modeled for instance by the projective [[model structure on chain complexes]]. In this every object is fibrant, and the cofibrant objects are those consisting of projective $k$-[[module]]s. If we assume that all our modules are projective (for instance in the archetypical case that our modules are simply [[vector space]]s), then $\omega : V_\bullet \to \mathbf{B}^n k$ is a cocycle in $\mathbf{H}_{Ch_\bullet}$ from the above abstract nonsense point of view. For its cohomology class we may write \begin{displaymath} [\omega] \in H^n(V_\bullet,k) = \pi_0 \mathbf{H}_{Ch_\bullet}(V_\bullet, \mathbf{B}^n k) \,. \end{displaymath} \hypertarget{Classification}{}\subsection*{{Objects classified by cocycles}}\label{Classification} One says for $\omega \in \mathbf{H}(X,A)$ a cocycle, that the object \textbf{classified by the cocycle} is its [[homotopy fiber]] $P \to X$ regarded as an object in the [[overcategory]] over $X$. This homotopy fiber may be thought of as the internal [[principal ∞-bundle]] in $\mathbf{H}$ with classifying map $\omega$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include chains and cochains - table]] [[!redirects cocycles]] \end{document}