\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cocylinder} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{cocylinders_and_mapping_cocylinders}{}\section*{{Cocylinders and mapping cocylinders}}\label{cocylinders_and_mapping_cocylinders} \noindent\hyperlink{ideas}{Ideas}\dotfill \pageref*{ideas} \linebreak \noindent\hyperlink{definition_cocylinders_and_cocylinder_functors}{Definition (cocylinders and cocylinder functors)}\dotfill \pageref*{definition_cocylinders_and_cocylinder_functors} \linebreak \noindent\hyperlink{ideas_continued}{Ideas continued}\dotfill \pageref*{ideas_continued} \linebreak \noindent\hyperlink{definition_mapping_cocylinders}{Definition (mapping cocylinders)}\dotfill \pageref*{definition_mapping_cocylinders} \linebreak \noindent\hyperlink{in_category_theory}{In category theory}\dotfill \pageref*{in_category_theory} \linebreak \noindent\hyperlink{in_type_theory}{In type theory}\dotfill \pageref*{in_type_theory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{ideas}{}\subsection*{{Ideas}}\label{ideas} In [[algebraic topology]] and [[homotopy theory]], a \textbf{cocylinder} is a dual construction to a [[cylinder]]. In contexts where spatial intuition is involved, it is perhaps more often called a [[path space]] $X^I$ or a [[path space object]]. In general, however, a cocylinder, $X^I$, may not involve any object $I$ nor use a mapping space in its construction, see [[cylinder functor]] for the discussion of the dual point. \hypertarget{definition_cocylinders_and_cocylinder_functors}{}\subsection*{{Definition (cocylinders and cocylinder functors)}}\label{definition_cocylinders_and_cocylinder_functors} These are the duals of [[cylinders]] and [[cylinder functors]] so can safely be left as an exercise. \hypertarget{ideas_continued}{}\subsection*{{Ideas continued}}\label{ideas_continued} Similarly, the \textbf{mapping cocylinder}, which is dual to the [[mapping cylinder]], is equally called the \textbf{mapping path space} or \textbf{mapping path fibration}. It provides a canonical way to factor any map as a [[homotopy equivalence]] followed by a [[fibration]]. \hypertarget{definition_mapping_cocylinders}{}\subsection*{{Definition (mapping cocylinders)}}\label{definition_mapping_cocylinders} \hypertarget{in_category_theory}{}\subsubsection*{{In category theory}}\label{in_category_theory} For a [[topological space]] $X$, its \textbf{cocylinder} is simply the path space $X^{[0,1]}$. More generally, in a [[cartesian closed category]] with an [[interval object]] $I$, the \textbf{cocylinder} of an object $X$ is the [[exponential object]] $X^I$. Even more generally, in a [[model category]] the \textbf{cocylinder} of any object is the [[path space object]] --- the factorization of the [[diagonal morphism]] $X\to X\times X$ as an [[acyclic cofibration]] followed by a [[fibration]]. In any of these cases: \begin{defn} \label{}\hypertarget{}{} Given a [[morphism]] $f\colon X\to Y$, its \textbf{mapping cocylinder} (or \textbf{mapping path space} or \textbf{mapping path fibration}) is the [[pullback]] \begin{displaymath} \itexarray{ Cocyl(f)&\to& X\\ \downarrow&&\downarrow f \\ Y^I&\stackrel{ev_0}{\to}&Y \\ \downarrow^{\mathrlap{ev_1}} \\ Y } \end{displaymath} where $Y^I$ is the cocylinder. \end{defn} The mapping cocylinder is sometimes denoted $M_f Y$ or $N f$. \begin{remark} \label{}\hypertarget{}{} If we interchange $ev_0$ and $ev_1$ then we have an upside-down version of a cylinder, sometimes called inverse (or inverted) mapping cocylinder; but usually it is clear just from the context which version is used. They are homotopy equivalent, so usually it does not matter. \end{remark} \hypertarget{in_type_theory}{}\subsubsection*{{In type theory}}\label{in_type_theory} In [[homotopy type theory]] the mapping cocylinder $Cocyl(f) \to Y$ is expressed as \begin{displaymath} y : Y \vdash \sum_{x \in X} (f(x) = y) \end{displaymath} being the [[dependent sum]] over $x$ of the [[substitution]] of $f(x)$ for $y_1$ in the [[dependent type|dependent]] [[identity type]] $(y_1 = y)$. Equivalently this is the $y$-[[dependent type|dependent]] [[homotopy fiber]] of $f$ at $y$ \begin{displaymath} y : Y \vdash hfiber(f,y) \,. \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item In the case of [[topological spaces]], the mapping cocylinder is the subspace $Cocyl(f)\subset Y^I\times X$ whose elements are pairs $(s,x)$ such that $s(0)=f(x)$. \item In [[homotopy type theory]], cocylinders represent [[identity types]], and the mapping cocylinder represents the [[dependent type]] $y\colon Y \vdash hfiber(f,y)\colon Type$. This is used crucially in the definition of [[equivalence in homotopy type theory]]. \end{itemize} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item The mapping cocylinder is the central ingredient in the [[factorization lemma]]. \item One usage is discussed at \emph{[[Hurewicz connection]]}. \item The mapping path fibration is used in the construction of the [[Strøm model structure]] on topological spaces. \item The [[homotopy fiber]] can be constructed as the strict [[fiber]] of the mapping cocylinder. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include universal constructions of topological spaces -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[George Whitehead]], \emph{Elements of homotopy theory} \end{itemize} Peter May's books use the terminology \emph{mapping path space}. [[!redirects cocylinder]] [[!redirects cocylinders]] [[!redirects mapping cocylinder]] [[!redirects mapping cocylinders]] [[!redirects mapping path space]] [[!redirects mapping path spaces]] [[!redirects mapping path fibration]] [[!redirects mapping path fibrations]] \end{document}