\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{codensity monad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category Theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{link}{Link}\dotfill \pageref*{link} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Every [[adjunction|right adjoint functor]] $F\dashv G:\mathcal{B}\to\mathcal{A}$ yields by a classical result a [[monad]] on $\mathcal{A}$ with endofunctor $G\circ F$. The \textbf{codensity monad} $\mathbb{T}^G$ is a generalization of this monad to functors $G:\mathcal{B}\to\mathcal{A}$ merely admitting a right [[Kan extension]] $Ran_G G$ of $G$ along itself, with both monads coinciding in case $G:\mathcal{B}\to\mathcal{A}$ is a right adjoint. The name `codensity monad' stems from the fact that $\mathbb{T}^G$ reduces to the identity monad iff $G:\mathcal{B}\to\mathcal{A}$ is a [[codense functor]]. Thus, in general, the codensity monad ``measures the failure of $G$ to be codense''. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{codensity_monad}\hypertarget{codensity_monad}{} Let $G:\mathcal{B}\to\mathcal{A}$ be a functor such that the right [[Kan extension]] $Ran_G G=(T^G,\;\alpha)$ of $G$ along itself exists with $\alpha :T^G\circ G\Rightarrow G$ the universal 2-cell of the functor $T^G:\mathcal{A}\to\mathcal{A}$. The \emph{codensity monad} of $G$ is given by the monad \begin{displaymath} \mathbb{T}^G:=\langle T^G:\mathcal{A}\to\mathcal{A},\;\eta^G:id_\mathcal{A}\Rightarrow T^G,\;\mu^G:T^G\circ T^G\Rightarrow T^G\rangle \end{displaymath} where the unit $\eta^G:id_\mathcal{A}\Rightarrow T^G$ is the natural transformation given by the universal property of $(T^G,\;\alpha)$ with respect to the pair $(id_\mathcal{A},\;1_G)\;$, whereas the multiplication $\mu^G:T^G\circ T^G\Rightarrow T^G$ results from the universal property of $(T^G,\;\alpha)$ with respect to the pair $(T^G\circ T^G,\;\alpha\circ (1_{T^G}\ast\alpha))$. \end{defn} That this indeed defines a monad follows from the universal properties of the Kan extension. Concerning existence, $Ran_G G$ exists for $G:\mathcal{B}\to\mathcal{A}$ e.g. when $\mathcal{B}$ is [[small category|small]] and $\mathcal{A}$ is [[complete category|complete]]. In this circumstance, when $\mathcal{B}$ is small and $\mathcal{A}$ is complete, then the codensity monad is equivalently the one that arises from the adjunction \begin{displaymath} \mathcal{A} \underoverset {\underset{}{\longleftarrow}} {\overset{hom(-,G)}{\longrightarrow}} {\bot} [\mathcal{B},Set]^{op} \end{displaymath} where the left adjoint $hom(-,G):\mathcal{A}\to [\mathcal{B},Set]^{op}$ takes an object $a$ to the functor $hom(a,G-):\mathcal{B}\to Set$. The right adjoint $[\mathcal{B},Set]^{op}\to \mathcal{A}$ is the canonical functor from the [[free completion]] of $\mathcal{B}$ to the category $\mathcal{A}$ which has limits. $G$ is codense if and only if the left adjoint is [[full and faithful]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The [[Giry monad]] (as well as a finitely additive version) arise as codensity monads of forgetful functors from subcategories of the category of [[convex sets]] to the category of [[measurable spaces]] (\hyperlink{Avery14}{Avery 14}). \item The codensity monad of the inclusion [[FinSet]] $\hookrightarrow$[[Set]] is the [[ultrafilter]] monad. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \ldots{}. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[dense functor]] \item [[shape theory]] \item [[Kan extension]] \item [[algebraic theory]] \item [[ultrafilter]] \item [[idempotent monad]] \end{itemize} \hypertarget{link}{}\subsection*{{Link}}\label{link} \begin{itemize}% \item nCafé blog 2012: \href{https://golem.ph.utexas.edu/category/2012/09/where_do_monads_come_from.html}{Where do Monads come from?} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A very nice overview is provided by \begin{itemize}% \item [[Tom Leinster]], \emph{Codensity and the Ultrafilter Monad} , TAC \textbf{12} no.13 (2013) pp.332-370. (\href{http://www.tac.mta.ca/tac/volumes/28/13/28-13abs.html}{abstract}) \end{itemize} Codensity monads arising from subcategory inclusions are studied in \begin{itemize}% \item [[Ivan Di Liberti]], \emph{Codensity: Isbell duality, pro-objects, compactness and accessibility}, arXiv:1910.01014 (2019). (\href{https://arxiv.org/abs/1910.01014}{abstract}) \end{itemize} The role in shape theory is discussed in \begin{itemize}% \item Armin Frei, \emph{On categorical shape theory} , Cah. Top. Géom. Diff. \textbf{XVII} no.3 (1976) pp.261-294. (\href{http://www.numdam.org/item/?id=CTGDC_1976__17_3_261_0}{numdam}) \item D. Bourn, J.-M. Cordier, \emph{Distributeurs et th\'e{}orie de la forme}, Cah. Top. G\'e{}om. Diff. Cat. \textbf{21} no.2 (1980) pp.161-189. (\href{http://archive.numdam.org/ARCHIVE/CTGDC/CTGDC_1980__21_2/CTGDC_1980__21_2_161_0/CTGDC_1980__21_2_161_0.pdf}{pdf}) \item J.-M. Cordier, [[Tim Porter|T. Porter]], \emph{Shape Theory: Categorical Methods of Approximation} , (1989), Mathematics and its Applications, Ellis Horwood. Reprinted Dover (2008). \end{itemize} For a description of the [[Giry monad]] as a codensity monad, see \begin{itemize}% \item [[Tom Avery]], \emph{Codensity and the Giry monad}, (\href{https://arxiv.org/abs/1410.4432}{arXiv:1410.4432}) \end{itemize} Other references include \begin{itemize}% \item C. Casacuberta, A. Frei, \emph{Localizations as idempotent approximations to completions} , JPAA \textbf{142} (1999) no. 1 pp.25–33. (\href{http://atlas.mat.ub.es/personals/casac/articles/cfre1.pdf}{draft}) \item Yves Diers, \emph{Complétion monadique} , Cah. Top. Géom. Diff. Cat. \textbf{XVII} no.4 (1976) pp.362-379. (\href{http://www.numdam.org/item/?id=CTGDC_1976__17_4_363_0}{numdam}) \item S. Katsumata, T. Sato, [[Tarmo Uustala|T. Uustala]], \emph{Codensity lifting of monads and its dual} , arXiv:1810.07972 (2012). (\href{https://arxiv.org/abs/1810.07972}{abstract}) \item [[Joachim Lambek|J. Lambek]], B. A. Rattray, \emph{Localization and Codensity Triples} , Comm. Algebra \textbf{1} (1974) pp.145-164. \end{itemize} [[!redirects codensity monads]] [[!redirects density comonad]] [[!redirects density comonads]] [[!redirects Codensity monad]] [[!redirects Codensity monads]] [[!redirects codensity triple]] \end{document}