\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{codomain fibration} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{universes}{}\paragraph*{{Universes}}\label{universes} [[!include universe - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{the_arrow_category}{The arrow category}\dotfill \pageref*{the_arrow_category} \linebreak \noindent\hyperlink{the_functor}{The functor}\dotfill \pageref*{the_functor} \linebreak \noindent\hyperlink{the_opcartesian_lifts}{The op-cartesian lifts}\dotfill \pageref*{the_opcartesian_lifts} \linebreak \noindent\hyperlink{the_cartesian_lifts}{The cartesian lifts}\dotfill \pageref*{the_cartesian_lifts} \linebreak \noindent\hyperlink{direct_image_operation}{Direct image operation}\dotfill \pageref*{direct_image_operation} \linebreak \noindent\hyperlink{inverse_image_operation}{Inverse image operation}\dotfill \pageref*{inverse_image_operation} \linebreak \noindent\hyperlink{adjointness_of_direct_and_inverse_image}{Adjointness of direct and inverse image}\dotfill \pageref*{adjointness_of_direct_and_inverse_image} \linebreak \noindent\hyperlink{monadic_descent}{Monadic descent}\dotfill \pageref*{monadic_descent} \linebreak \noindent\hyperlink{in_higher_category_theory}{In higher category theory}\dotfill \pageref*{in_higher_category_theory} \linebreak \noindent\hyperlink{in_2category_theory}{In 2-category theory}\dotfill \pageref*{in_2category_theory} \linebreak \noindent\hyperlink{InInfinityCategoryTheory}{In $(\infty,1)$-category theory}\dotfill \pageref*{InInfinityCategoryTheory} \linebreak \noindent\hyperlink{as_a_universe}{As a universe}\dotfill \pageref*{as_a_universe} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $C$ any [[category]], there is a [[functor]] \begin{displaymath} t : [I,C] \to C \,, \end{displaymath} from the [[arrow category]] $[I,C] = Arr(C)$ that sends each [[morphism]] $(c_1 \stackrel{f}{\to} c_2) \in [I,C]$ to its codomain $c_2$. This functor is always an [[Grothendieck fibration|opfibration]]. It corresponds under the [[Grothendieck construction]] to the [[pseudofunctor]] \begin{displaymath} C/(-) : C \to Cat \end{displaymath} that sends each object $c \in C$ to the [[overcategory]] $C/c$. If $C$ has all [[pullback]]s, then the functor is in addition a [[Grothendieck fibration|fibration]], hence a [[bifibration]]. Traditionally, though, its fibered aspect is emphasised (and it even motivates the notion of cartesianess for categories over categories). A right adjoint $u_*$ of $u^*$ exists for every morphism $u$ in $C$ iff C is a [[locally cartesian closed category]]. This functor $cod : [I,C] \to C$ is called the \textbf{codomain fibration} of $C$. Some say \textbf{basic fibration} or \textbf{[[indexed category|self-indexing]]} or the \textbf{fundamental fibration} --- anything with so many names must be important! If instead of the codomain the domain is used, one obtains the dual notion: [[domain opfibration]]. \hypertarget{details}{}\subsection*{{Details}}\label{details} We spell out the details of the functor, of its cartesian and opcartesian morphisms and their properties. \hypertarget{the_arrow_category}{}\subsubsection*{{The arrow category}}\label{the_arrow_category} Recall from the discussion at [[arrow category]] that the objects in $Arr(C)$ are morphisms in $C$ and the morphisms $(f:x_1\to x_2)\to (g: y_1\to y_2)$ in $Arr(C)$ are the commutative squares in $C$ of the form \begin{displaymath} \itexarray{ x_1 &\stackrel{v}\to& y_1 \\ \downarrow\mathrlap{f} && \downarrow\mathrlap{g} \\ x_2 &\stackrel{u}\to& y_2 } \end{displaymath} with the obvious composition. \hypertarget{the_functor}{}\subsubsection*{{The functor}}\label{the_functor} The [[functor]] $cod : Arr(C)\to C$ is given on objects by the codomain (= target) map, and on morphisms it gives the lower arrow of the commutative square. \begin{displaymath} cod : \;\; \left( \itexarray{ x_1 &\stackrel{v}\to& y_1 \\ \downarrow\mathrlap{f} && \downarrow\mathrlap{g} \\ x_2 &\stackrel{u}\to& y_2 } \right) \;\; \mapsto \;\; (x_2 \stackrel{u}\to y_2) \,. \end{displaymath} If we write $[I,C]$ for the [[arrow category]], where $I$ is the [[interval category]] $I = \{a \to b\}$, then this functor is the [[hom-functor]] applied to the inclusion $\iota_1 : {b} \to \{a \to b\}$ \begin{displaymath} cod = Hom_C(\iota_1, -) : [I,C] \to [{*}, C] = C \,. \end{displaymath} \hypertarget{the_opcartesian_lifts}{}\subsubsection*{{The op-cartesian lifts}}\label{the_opcartesian_lifts} That the functor $cod : [I,C] \to C$ is an [[Grothendieck fibration|opfibration]] means that for each object $\hat c_1 \to c_1$ of $[I,C]$, each morphism $c_1 \stackrel{f}{\to} c_2$ in $C$ has a lift to a morphism \begin{displaymath} \itexarray{ \hat c_1 &\to& ?? \\ \downarrow && \downarrow \\ c_1 &\to& c_2 } \end{displaymath} in $[I,C]$ that is a [[cartesian morphism|opcartesian morphism]]. Such a lift is given by \begin{displaymath} \itexarray{ \hat c_1 &\stackrel{Id}{\to}& \hat c_1 \\ \downarrow && \downarrow \\ c_1 &\to& c_2 } \,. \end{displaymath} For given any commuting triangle \begin{displaymath} \itexarray{ && c_2 \\ & \nearrow && \searrow \\ c_1 &&\to&& c_3 } \end{displaymath} in $C$, and any lift \begin{displaymath} \itexarray{ \hat c_1 &\to& d \\ \downarrow && \downarrow \\ c_1 &\to& c_3 } \end{displaymath} of $c_1 \to c_3$, there is the unique lift \begin{displaymath} \itexarray{ \hat c_1 &\to& d \\ \downarrow && \downarrow \\ c_2 &\to& c_3 } \end{displaymath} such that \begin{displaymath} \left( \itexarray{ \hat c_1 &\stackrel{Id}{\to}& \hat c_1 &\to& d \\ \downarrow && \downarrow && \downarrow \\ c_1 &\to& c_2 &\to& c_3 } \right) \;\;\; = \;\;\; \itexarray{ \hat c_1 &\to& d \\ \downarrow && \downarrow \\ c_1 &\to& c_3 } \,. \end{displaymath} \hypertarget{the_cartesian_lifts}{}\subsubsection*{{The cartesian lifts}}\label{the_cartesian_lifts} If $C$ has [[pullback]]s, then $cod : [I,C] \to C$ is in addition a [[Grothendieck fibration|fibered category]] in the sense of Grothendieck: for every object $\hat c_2 \to c_2$ in $[I,C]$, the cartesian lift of a morphism $c_1 \to c_2$ in $C$ is given by the morphism \begin{displaymath} \itexarray{ c_1 \times_{c_2} \hat c_2 &\to& \hat c_2 \\ \downarrow && \downarrow \\ c_1 &\to& c_2 } \,. \end{displaymath} Because for \begin{displaymath} \itexarray{ && c_3 \\ & \swarrow && \searrow \\ c_1 &&\to&& c_2 } \end{displaymath} any commuting triangle in $C$, and for \begin{displaymath} \itexarray{ d &\to& \hat c_2 \\ \downarrow && \downarrow \\ c_3 &\to& c_2 } \end{displaymath} any lift of $c_3 \to c_2$ in $[I,C]$, which by the commutativity of the triangle we may write as \begin{displaymath} \itexarray{ d &\to& &\to& \hat c_2 \\ \downarrow && && \downarrow \\ c_3 &\to& c_1 &\to& c_2 } \end{displaymath} there is, precisely by the universal property of the [[pullback]], a unique morphism, $d\to c_1 \times_{c_2} \hat c_2$ in $C$ such that this factors as \begin{displaymath} \itexarray{ d &\to& c_1 \times_{c_2} \hat c_2 &\to& \hat c_2 \\ \downarrow && \downarrow && \downarrow \\ c_3 &\to& c_1 &\to& c_2 } \,. \end{displaymath} \hypertarget{direct_image_operation}{}\subsubsection*{{Direct image operation}}\label{direct_image_operation} Recall that in an [[Grothendieck fibration|opfibration]] $p : E\to B$ , the \emph{direct image} $f_!$ of an object $e \in E$ along a morphism $p(e) \to d$ is the codomain $f_!(e)$ of [[generalized the|the]] opcartesian lift $\hat f : e \to f_! e$ of $f$. By the above discussion this means that in the codomain opfibration $cod : [I,C] \to C$ the direct image of an object $\hat c_1 \to c_1$ in $[I,C]$ along some morphism $f : c_1 \to c_2$ is the composite morphism $\hat c_1 \to c_1 \to c_2$ in $C$, regarded as an object in $[I,C]$: this yields the functor \begin{displaymath} f_! : C/{c_1} \to C/{c_2} \end{displaymath} of [[overcategory|overcategories]] obained by postcomposition with $f$. \hypertarget{inverse_image_operation}{}\subsubsection*{{Inverse image operation}}\label{inverse_image_operation} Recall that in an [[Grothendieck fibration|fibration]] $p : E\to B$ , the \emph{inverse image} $f^*$ of an object $e \in E$ along a morphism $d \to p(e)$ is the domain $f^*(e)$ of [[generalized the|the]] cartesian lift $\hat f : f^* e \to e$ of $f$. By the above discussion this means that in the codomain fibration $cod : [I,C] \to C$ the inverse image of an object $\hat c_2 \to c_2$ in $[I,C]$ along some morphism $f : c_1 \to c_2$ is the morphism out of the [[pullback]] $f^* c_2 = c_1 \times_{c_2} \hat c_2 \to c_1$ in $C$, regarded as an object in $[I,C]$: this yields the functor \begin{displaymath} C/{c_1} \leftarrow C/{c_2} : f^* \end{displaymath} of [[overcategory|overcategories]] obained by pullback. \hypertarget{adjointness_of_direct_and_inverse_image}{}\subsubsection*{{Adjointness of direct and inverse image}}\label{adjointness_of_direct_and_inverse_image} For every morphism $f : c_1 \to c_2$ in $C$, the direct and inverse image functors are a pair of [[adjoint functor]]s \begin{displaymath} f_! : C/{c_1} \to C/{c_2} : f^* \end{displaymath} with $f_!$ [[left adjoint]] and $f^*$ [[right adjoint]], $f_! \dashv f^*$. By the above discussion, the adjunction isomorphism \begin{displaymath} Hom_{C_2}(f_! \hat c_1, \hat c_2) \simeq Hom_{C_1}(\hat c_1, f^*\hat c_2) \end{displaymath} is given by the universal property of the [[pullback]] operation, which says that morphisms \begin{displaymath} (f_! \hat c_1 \to \hat c_2) = \left( \itexarray{ \hat c_1 &\to& \hat c_2 \\ \downarrow && \downarrow \\ c_1 &\to& c_2 } \right) \end{displaymath} factor uniquely through the [[pullback]] \begin{displaymath} \left( \itexarray{ \hat c_1 &\to& c_1 \times_{c_2} \hat c_2 &\to& \hat c_2 \\ &\searrow & \downarrow && \downarrow \\ && c_1 &\to& c_2 } \right) \end{displaymath} and hence uniquely correspond to morphisms \begin{displaymath} (\hat c_1 \to f^* \hat c_2) = \left( \itexarray{ \hat c_1 &\to& c_1 \times_{c_2} \hat c_2 \\ \downarrow && \downarrow \\ c_1 &\to& c_2 } \right) \,. \end{displaymath} If $C$ is a [[model category]], and $u:c\to d$ a morphism in $C$, we can consider the induced model structure on the overcategories $C/c$, and $C/d$. The adjoint pair \begin{displaymath} u_! : C/c \leftrightarrows C/d : u^* \end{displaymath} is then a Quillen pair. \hypertarget{monadic_descent}{}\subsection*{{Monadic descent}}\label{monadic_descent} Since the codomain fibration $cod : [I,C] \to C$ is a [[bifibration]] when $C$ has all [[pullback]]s, there is a notion of [[monadic descent]] in this case. Details on this are at \href{http://ncatlab.org/nlab/show/monadic+descent#ForCodomainFibs}{monadic descent for codomain fibrations}. \hypertarget{in_higher_category_theory}{}\subsection*{{In higher category theory}}\label{in_higher_category_theory} We discuss the codomain fibration in [[higher category theory]]. \hypertarget{in_2category_theory}{}\subsubsection*{{In 2-category theory}}\label{in_2category_theory} A categorification in dimension 2 (see [[2-category theory]]) is a codomain 2-fibration, whose main example is $Cat^2$ over $Cat$. [[Mike Shulman]]: I still don't believe that that is a 2-fibration. How do you lift the 2-cells? [[David Roberts]]: How does one lift the 2-cells in a 2-fibration anyway? The case of $Cat^\mathbf{2}\to Cat$ (using weak 2-functors in $Cat^\mathbf{2}$) should in my opinion be an guiding example for this. Although, perhaps it would be better to consider (at least at first) the underlying (2,1)-category or even the (2,1)-category $Gpd$. [[Mike Shulman]]: I think the guiding example of a 2-fibration should actually be $Fib \to Cat$, as in \href{http://www.cs.math.ist.utl.pt/s84.www/cs/claudio/articles/2-fib.ps}{Hermida's paper}. There, you can lift the 2-cells, because in each fibration you can lift the 1-cells. \hypertarget{InInfinityCategoryTheory}{}\subsubsection*{{In $(\infty,1)$-category theory}}\label{InInfinityCategoryTheory} Let $\mathcal{X}$ be an [[(∞,1)-category]]. \begin{prop} \label{}\hypertarget{}{} The codomain fibration \begin{displaymath} Cod : \mathcal{X}^I \to \mathcal{X} \end{displaymath} is an [[coCartesian fibration]]. It is classified under the [[(∞,1)-Grothendieck construction]] by \begin{displaymath} A \mapsto \mathcal{X}_{/A} \,, \end{displaymath} where on the right we have the [[over-(∞,1)-category]]. \end{prop} This is a special case of (\hyperlink{Lurie}{Lurie, corollary 2.4.7.12}). For $\mathcal{X}$ an [[(∞,1)-topos]], this is the canonical [[(infinity,2)-sheaf]]. \hypertarget{as_a_universe}{}\subsection*{{As a universe}}\label{as_a_universe} (\ldots{}) $\mathbf{H}$ an [[(∞,1)-topos]] the codomain fibration is the [[dependent sum]] \begin{displaymath} \sum_{Type} : \mathbf{H}_{/Type} \to \mathbf{H}_{/*} \simeq \mathbf{H} \end{displaymath} where $Type \in \mathbf{H}$ is the [[object classifier]], of some size. This is the internal [[universe]]. Since the [[slice (∞,1)-topos]] $\mathbf{H}_{/X}$ is the [[context]] given by $X$, in a precise sense $\mathbf{H}_{/Type}$ is the ``context of the universe''. And so this says that the codomain fibration is the ``context of the universe'' regarded over the base $\infty$-topos which is the ``outermost universe''. (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[tangent category]] \item [[tangent (infinity,1)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Secton 2.4.7 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} [[!redirects codomain fibrations]] [[!redirects codomain opfibration]] [[!redirects codomain opfibrations]] [[!redirects self-indexing]] [[!redirects self-indexing of a category]] \end{document}