\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{coend in a derivator} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{ends_and_coends_in_a_derivator}{}\section*{{Ends and coends in a derivator}}\label{ends_and_coends_in_a_derivator} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{as_a_colimit_over_simplices}{As a colimit over simplices}\dotfill \pageref*{as_a_colimit_over_simplices} \linebreak \noindent\hyperlink{as_a_colimit_over_arrows}{As a colimit over arrows}\dotfill \pageref*{as_a_colimit_over_arrows} \linebreak \noindent\hyperlink{as_a_bar_construction}{As a bar construction}\dotfill \pageref*{as_a_bar_construction} \linebreak \noindent\hyperlink{as_a_weighted_colimit}{As a weighted colimit}\dotfill \pageref*{as_a_weighted_colimit} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} [[end|Ends]] and [[coends]] are special sorts of [[limit]] and [[colimit]], respectively, and have corresponding sorts of [[homotopy limits]] and colimits -- [[homotopy ends]] and coends. Since a [[derivator]] is a formal structure for computing homotopy limits and colimits, there are corresponding notions of ends and coends in a derivator. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $D$ be a [[derivator]] indexed on a 2-category $Dia$ of diagram shapes, let $A\in Dia$, and let $H\in D(A^{op}\times A)$; we wish to define the \emph{coend} of $H$ (obvious dualizations will yield its \emph{end}). We will give four equivalent definitions, each of which generalizes a classical construction of ordinary coends in terms of colimits. \hypertarget{as_a_colimit_over_simplices}{}\subsubsection*{{As a colimit over simplices}}\label{as_a_colimit_over_simplices} One classical construction of a coend as a colimit proceeds by constructing an auxiliary category $A^{tw}$, whose objects are the objects and arrows of $A$, with morphisms from each arrow of $A$ (regarded as an object of $A^{tw}$) to its domain and codomain. There is a functor $p\colon A^{tw}\to A^{op}\times A$ which sends each object $x$ to $(x,x)$ and each arrow $f\colon x\to y$ to $(y,x)$, and the coend of $H\colon A^{op}\times A\to C$ can be constructed as the colimit of $p^* H\colon A^{tw}\to C$. We can mimic this in a derivator, except that we need to ``homotopify'' $A^{tw}$ by including higher information as well. Thus, let $(\Delta / A)^{op}$ denote the opposite of the category of simplices of $A$. Thus its objects are functors $x\colon [n]\to A$, and its morphisms from $x\colon [n]\to A$ to $y\colon [m]\to A$ are functors $[m]\to [n]$ making the evident triangle commute. There is a functor $p\colon (\Delta / A)^{op} \to A^{op}\times A$ which sends $x\colon [n]\to A$ to $(x(n), x(0))$. Note that $A^{tw}$, as constructed above, is the full subcategory of $(\Delta / A)^{op}$ containing only the 0-simplices and 1-simplicies. The inclusion of this subcategory is [[final functor|final]], but not [[homotopy final functor|homotopy final]]. Thus, for ordinary colimits it suffices to consider $A^{tw}$, but for homotopy colimits we need all of $(\Delta / A)^{op}$. Hence, we define the \textbf{(homotopy) coend} of $H\in D(A^{op}\times A)$ to be the (homotopy) colimit of $p^* H \in D((\Delta / A)^{op})$. \hypertarget{as_a_colimit_over_arrows}{}\subsubsection*{{As a colimit over arrows}}\label{as_a_colimit_over_arrows} Another classical construction of a coend as a colimit involves a different auxiliary category, the opposite [[twisted arrow category]] $Tw(A)^{op}$. The objects of $Tw(A)^{op}$ are arrows $f\colon x\to y$ in $A$, and its morphisms from $f\colon x\to y$ to $g\colon z\to w$ are commutative squares \begin{displaymath} \itexarray{ x & \to & z\\ ^f \downarrow & & \downarrow^g\\ y & \leftarrow & w } \end{displaymath} in $A$. There is a projection \begin{displaymath} r \colon Tw(A)^{op} \to A^{op}\times A \end{displaymath} sending $f\colon x\to y$ to $(y,x)$, and the coend of $H\colon A^{op}\times A\to C$ can be constructed as the colimit of $r^* H\colon Tw(A)^{op} \to C$. Amazingly, this version needs no modification to become homotopical. Given $H\in D(A^{op}\times A)$ in a derivator, we can simply restrict along $r$ to $Tw(A)^{op}$, then take the (homotopy) colimit. To see that this agrees with the previous definition, it suffices to factor $q$ through $r$ via a [[homotopy final functor]] $s$: \begin{displaymath} \itexarray{ & & Tw(A)^{op} \\ & ^{s}\nearrow & & \searrow^{r}\\ (\Delta / A)^{op} & & \underset{q}{\to} & & A^{op}\times A } \end{displaymath} The definition of $s$ is simple: we regard an $n$-simplex as a string of $n$ composable arrows in $A$ and take its composite. The morphisms in the two categories match nicely. To show that $s$ is homotopy final, we must show that \begin{displaymath} \itexarray{(\Delta / A)^{op} & \xrightarrow{s} & Tw(A)^{op} \\ \downarrow & & \downarrow \\ * & \to & * } \end{displaymath} is a [[homotopy exact square]]. For this, it suffices to show that it becomes homotopy exact when pasted with any [[comma square]] \begin{displaymath} \itexarray{Q_{f} & \overset{}{\to} & *\\ \downarrow & \swArrow & \downarrow^{f}\\ (\Delta / A)^{op}& \underset{}{\to} & Tw(A)^{op}.} \end{displaymath} The objects of the category $Q_{f}$ are strings of composable $n\ge 2$ arrows whose composite is $f$. Its morphisms are like those of $(\Delta / A)^{op}$, but the first and last face maps are also given by composition instead of forgetting. In fact, it is precisely the category of simplices of the fiber of the [[two-sided bar construction]] $B(A(-,b),A,A(a,-))$ over $f$. However, the simplicial map $B(A(-,b),A,A(a,-)) \to A(a,b)$, with $A(a,b)$ a discrete simplicial set, is well-known to be a [[simplicial homotopy equivalence]] and thus a weak equivalence of simplicial sets. Thus, each of its fibers is simplicially contractible, and hence each $Q_f$ has contractible nerve. This implies that \begin{displaymath} \itexarray{ Q_f & \to & * \\ \downarrow & & \downarrow \\ * & \to & * } \end{displaymath} is homotopy exact, and thus $s$ is homotopy final. \hypertarget{as_a_bar_construction}{}\subsubsection*{{As a bar construction}}\label{as_a_bar_construction} Another classical construction of a coend as a colimit is as the [[coequalizer]] of a [[parallel pair]] \begin{displaymath} \coprod_{f\colon x\to y} H(y,x) \;\rightrightarrows\; \coprod_{x} H(x,x). \end{displaymath} This can be obtained in a straightforward way from the previous construction. If $Ppr$ denotes the [[walking structure|walking]] parallel pair $(1 \rightrightarrows 0)$, then there is a functor $q\colon A^{tw}\to Ppr$ sending each object of $A$ to 0, each arrow of $A$ to 1, and sorting the morphisms by whether they map an arrow to its domain or to its codomain. Then the above parallel pair is the (pointwise) [[left Kan extension]] of $p^* H \colon A^{tw} \to C$ along $q$. Because $q$ is a [[discrete opfibration]], left Kan extension along it can be computed with colimits over its fibers -- since each fiber is discrete, we obtain the coproducts above. And since the colimit of $p^*H$ is equivalently its left Kan extension to the [[point]], the functoriality of Kan extensions means that $\colim^{A^{tw}} p^* H$ is isomorphic to $\colim^{Ppr} Lan_q p^* H$, the latter being precisely the above coequalizer. We can homotopify this in a straightforward way as well. Let $p\colon (\Delta / A)^{op} \to A^{op}\times A$ be as above, and let $q\colon (\Delta / A)^{op} \to \Delta^{op}$ be the obvious forgetful functor (whose target is the opposite of the [[simplex category]]). Note that as before, $Ppr$ is a final, but not homotopy-final, subcategory of $\Delta^{op}$. The functoriality of homotopy Kan extensions in a derivator means that the homotopy colimit of $p^* H\in D((\Delta / A)^{op})$ can equivalently be calculated as the homotopy colimit of $q_! p^* H \in D(\Delta^{op})$. Note that since an object $D(\Delta^{op})$ is a [[simplicial object]] of $D$, it makes sense to call its colimit [[geometric realization]]. Moreover, the homotopy version of $q$ is also a discrete opfibration, and since pullbacks of fibrations are [[homotopy exact square|homotopy exact]], homotopy Kan extensions along $q$ are also computed as colimits over its fibers. These fibers are also discrete, so we obtain a simplicial diagram of the following sort: \begin{displaymath} \cdots \coprod_{x_0\xrightarrow{f_1} x_1 \xrightarrow{f_2} x_2} H(x_2,x_0) \underoverset{\to}{\to}{\underoverset{\leftarrow}{\leftarrow}{\to}} \coprod_{x_0\xrightarrow{f_1} x_1} H(x_1,x_0) \underoverset{\to}{\to}{\leftarrow} \coprod_{x} H(x,x) \end{displaymath} This is a derivator version of the [[bar construction]] of $H$. (A bar construction is perhaps the most classical construction of homotopy coends.) \hypertarget{as_a_weighted_colimit}{}\subsubsection*{{As a weighted colimit}}\label{as_a_weighted_colimit} A last classical construction of a coend is as a [[weighted colimit]] of $H\colon A^{op}\times A\to C$, weighted by the [[hom-functor]] $hom\colon A^{op}\times A \to Set$. In order to homotopify this, recall that weighted colimits can be constructed in terms of Kan extensions by first Kan extending to the [[collage]] of the weighting (pro)functor, then restricting to the target object. Thus, let $B$ denote the collage of $hom\colon A^{op}\times A \to Set$ regarded as a profunctor $1 ⇸ A^{op}\times A$, with inclusions $u\colon 1\to B$ and $v\colon A^{op}\times A \to B$. We can therefore define the \textbf{homotopy coend} of $H\in D(A^{op}\times A)$ to be $u^* v_! H$. To show that this is the same as the previous definitions, we simply observe that there is a comma square \begin{displaymath} \itexarray{Tw(A)^{op}& \overset{r}{\to} & A^{op}\times A\\ ^!\downarrow & \swArrow_\alpha & \downarrow^v\\ 1& \underset{u}{\to} & B} \end{displaymath} Thus, by one of the axioms of a derivator, $u^* v_! H \cong \colim (r^* H)$. [[!redirects end in a derivator]] [[!redirects ends in a derivator]] [[!redirects ends in derivators]] [[!redirects coend in a derivator]] [[!redirects coends in a derivator]] [[!redirects coends in derivators]] \end{document}