\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cofibrantly generated model category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RecognitionTheorems}{Recognition theorem}\dotfill \pageref*{RecognitionTheorems} \linebreak \noindent\hyperlink{transfer_along_adjunctions}{Transfer along adjunctions}\dotfill \pageref*{transfer_along_adjunctions} \linebreak \noindent\hyperlink{PresentationAndGeneration}{Presentation and generation}\dotfill \pageref*{PresentationAndGeneration} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{on_simplicial_sets}{On simplicial sets}\dotfill \pageref*{on_simplicial_sets} \linebreak \noindent\hyperlink{on_topological_spaces}{On topological spaces}\dotfill \pageref*{on_topological_spaces} \linebreak \noindent\hyperlink{on_sequential_spectra}{On sequential spectra}\dotfill \pageref*{on_sequential_spectra} \linebreak \noindent\hyperlink{on_structured_spectra}{On structured spectra}\dotfill \pageref*{on_structured_spectra} \linebreak \noindent\hyperlink{on_diagrams}{On diagrams}\dotfill \pageref*{on_diagrams} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[model category]] $C$ is \emph{cofibrantly generated} if there is a [[set]] (meaning: [[small set]], not a proper [[class]]) of cofibrations and one of trivial cofibrations, such that all other (trivial) cofibrations are \emph{generated} from these. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We need the following general terminology \begin{defn} \label{}\hypertarget{}{} Let $C$ be a category with all [[colimits]] and let $S \subset Mor(C)$ a class of morphisms. We write \begin{itemize}% \item $rlp(S)$ for the collection of morphisms with the \emph{right} [[lifting property]]; \item $llp(S)$ for the collection of morphisms with the \emph{left} [[lifting property]] with respect to $S$, the \end{itemize} Moreover, we also write, now for $I \subset Mor(C)$: \begin{itemize}% \item $cell(I)$ for the [[relative cell complexes]], the class of morphisms obtained by [[transfinite composition]] of [[pushouts]] of [[coproducts]] of elements in $I$; \item $cof(I)$ for the class of [[retracts]] (in the [[arrow category]] $Arr(C)$) of elements in $cell(I)$ \item $inj(I) := rlp(I)$ for the class of morphisms with the right [[lifting property]] with respect to $I$, the \emph{$I$-[[injective morphisms]]}. \end{itemize} \end{defn} \begin{defn} \label{CofibrantlyGeneratedModelCategory}\hypertarget{CofibrantlyGeneratedModelCategory}{} A [[model category]] $\mathcal{C}$ is \textbf{cofibrantly generated} if there are small [[sets]] of morphisms $I, J \subset Mor(\mathcal{C})$ such that \begin{itemize}% \item $cof(I)$ is precisely the collection of cofibrations of $C$; \item $cof(J)$ is precisely the collection of acyclic cofibrations in $C$; and \item $I$ and $J$ permit the [[small object argument]]. \end{itemize} \end{defn} Since $I$ and $J$ are assumed to admit the [[small object argument]] the collection of cofibrations and acyclic cofibrations has the following simpler characterization: \begin{prop} \label{RetractsOfCellComplexesExchaustLLPOfRLP}\hypertarget{RetractsOfCellComplexesExchaustLLPOfRLP}{} In a cofibrantly generated model category we have \begin{itemize}% \item $cof(I) = llp(rlp(I))$ \item $cof(J) = llp(rlp(J))$. \end{itemize} \end{prop} And therefore the fibrations are precisely $rlp(J)$ and the acyclic fibrations precisely $rlp(I)$. \begin{proof} The argument is the same for $I$ and $J$. So take $I$. By definition we have $I \subset llp(rlp(I))$ and it is readily checked that collections of morphisms given by a left lifting property are stable under pushouts, transfinite composition and retracts (see \href{injective+or+projective+morphism#ClosurePropertiesOfInjectiveAndProjectiveMorphisms}{here} for details). So $cof(I) \subset llp(rlp(I))$. For the converse inclusion we use the [[small object argument]]: let $f : X \to Z$ be in $llp(rlp(I))$. The small object argument produces a factorization $f : X \stackrel{f' \in cof(I)}{\to} Y \stackrel{f''\in rlp(I)}{\to} Z$. Finally we apply the ``[[retract argument]]'': It follows that $f$ has the left [[lifting property]] with respect to $f''$ which yields a morphism $\sigma$ in \begin{displaymath} \itexarray{ X &\stackrel{f'}{\to}& Y \\ \downarrow^{\mathrlap{f}} &{}^\sigma\nearrow& \downarrow^{\mathrlap{f''}} \\ Z &\stackrel{=}{\to}& Z } \end{displaymath} which exhibits $f$ as a retract of $f'$ \begin{displaymath} \itexarray{ X &\stackrel{=}{\to}& X &\stackrel{=}{\to}& X \\ \downarrow^{\mathrlap{f}} && \downarrow^{\mathrlap{f'}} && \downarrow^{\mathrlap{f}} \\ Z &\stackrel{\sigma}{\to}& Y &\stackrel{f''}{\to}& Z } \,. \end{displaymath} Therefore $f \in cof(I)$. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RecognitionTheorems}{}\subsubsection*{{Recognition theorem}}\label{RecognitionTheorems} The following theorem allows one to recognize cofibrantly generated model categories by checking fewer conditions. \begin{theorem} \label{}\hypertarget{}{} Let $C$ be a [[category]] with all small [[limit]]s and [[colimit]]s and $W$ a class of maps satisfying [[category with weak equivalences|2-out-of-3]]. If $I$ and $J$ are sets of maps in $C$ such that \begin{enumerate}% \item both $I$ and $J$ permit the [[small object argument]]; \item $cof(J) \subset cof(I) \cap W$; \item $inj(I) \subset inj(J) \cap W$; \item one of the following holds \begin{enumerate}% \item $cof(I) \cap W \subset cof(J)$ \item $inj(J) \cap W \subset inj(I)$ \end{enumerate} \end{enumerate} then there is the stucture of a cofibrantly generated model category on $C$ with \begin{itemize}% \item weak equivalences $W_C := W$ \item generating cofibrations $I$ (i.e. $cof_C := llp(rlp(I))$) \item generating acyclic cofibrations $J$. \end{itemize} \end{theorem} This is originally due to [[Daniel Kan]], reproduced for instance as (\hyperlink{Hirschhorn03}{Hirschhorn 03, theorem 11.3.1}). \begin{proof} We have to show that with weak equivalences $W$ setting $cof_C := cof(I)$ and $fib_C := inj(J)$ defines a model category structure. The existence of [[limit]]s, [[colimit]]s and the [[category with weak equivalences|2-out-of-3 property]] holds by assumption. Closure under retracts of the weak equivalences will hold automatically if we check the rest of the axioms without using it, by an argument of A. Joyal. Closure under retracts of $fib$ and $cof$ follows by the general statement that classes of morphisms defined by a left or right lifting property are closed under retracts (e.g. \hyperlink{Hirschhorn03}{Hirschhorn 03, 7.2.8,}). The factorization property follows by applying the [[small object argument]] to the set $I$, showing that every morphism may be factored as \begin{displaymath} \stackrel{\in cof(I)}{\to} \stackrel{\in inj(I) \subset fib_C}{\to} \end{displaymath} and assumption 3 says that $inj(I) \subset W$. Similarly applying the small object argument to $J$ gives factorizations \begin{displaymath} \stackrel{\in cof(J)}{\to} \stackrel{\in inj(J) = fib_C}{\to} \end{displaymath} and assumption 2 guarantees that $cof(J) \subset W$. It remains to verify the lifting axiom. This verification depends on which of the two parts of item 4 is satisfied. Assume the first one is, the argument for the second one is analogous. Then using the assumption $cof(I) \cap W \subset cof(J)$ and remembering that we have set $inj(J) = fib_C$ we immediately have the lifting of trivial cofibrations on the left against fibrations on the right. To get the lifting of cofibrations on the left with acyclic fibrations on the right, we show finally that $inj(J) \cap W \subset inj(I)$. To see this, apply the factorization established before to an acyclic fibration $f : X \to Y$ to get \begin{displaymath} \itexarray{ X &\stackrel{=}{\to}& X \\ \downarrow^{\mathrlap{\in cof(I) \cap W}} && \downarrow^{\mathrlap{f \in inj(J) \cap W}} \\ Z &\stackrel{inj(I)}{\to}& Y } \,. \end{displaymath} With assumption 4 a this is \begin{displaymath} \itexarray{ X &\stackrel{=}{\to}& X \\ \downarrow^{\mathrlap{\in cof(J) }} && \downarrow^{\mathrlap{f \in inj(J) \cap W}} \\ Z &\stackrel{inj(I)}{\to}& Y } \end{displaymath} so that we have a lift \begin{displaymath} \itexarray{ X &\stackrel{=}{\to}& X \\ {}^{\mathllap{\in cof(J) }} \downarrow &{}^\sigma\nearrow& \downarrow^{\mathrlap{f \in inj(J) \cap W}} \\ Z &\stackrel{inj(I)}{\to}& Y } \end{displaymath} which establishes a retract \begin{displaymath} \itexarray{ X &\to& Z &\stackrel{\sigma}{\to}& X \\ \downarrow^f && \downarrow^{\mathrlap{\in inj(I)}} && \downarrow^f \\ Y &\stackrel{=}{\to}& Y & \stackrel{=}{\to} & Y } \end{displaymath} that exhibits $f$ as an element of $inj(I)$ as this is closed under retracts. \end{proof} \hypertarget{transfer_along_adjunctions}{}\subsubsection*{{Transfer along adjunctions}}\label{transfer_along_adjunctions} \begin{theorem} \label{TransferOfCofibrantlyGeneratedModelStructure}\hypertarget{TransferOfCofibrantlyGeneratedModelStructure}{} Let $\mathcal{C}$ be a cofibrantly generated model category, def. \ref{CofibrantlyGeneratedModelCategory}, with generating (acyclic) cofibrations $I$ (and $J$). Let $\mathcal{D}$ be any [[category]] with all small [[limits]] and [[colimits]] and consider a pair of [[adjoint functors]] \begin{displaymath} (F \dashv U) \;\colon\; \itexarray{ \mathcal{D} \stackrel{\overset{F}{\longleftarrow}}{\underset{U}{\longrightarrow}} \mathcal{C} } \,. \end{displaymath} Write $F I \coloneqq \{F(i) | i \in I\}$ and $F J \coloneqq \{F(j) | j \in J\}$. If \begin{enumerate}% \item both $F I$ and $F J$ admit the [[small object argument]]; \item $U$ takes $F J$-[[relative cell complexes]] to weak equivalences \end{enumerate} then $F I$, $F J$ induce a cofibrantly generated model structure, def. \ref{CofibrantlyGeneratedModelCategory}, on $\mathcal{D}$. Its weak equivalences are the morphisms that are taken to weak equivalences by $U$. Moreover, the above [[adjunction]] is a [[Quillen adjunction]] for these model structures. \end{theorem} This is due to [[Daniel Kan]], reproduced in (\hyperlink{Hirschhorn03}{Hirschhorn 03, theorem 11.3.2}). See also at \emph{[[transferred model structure]]}. \hypertarget{PresentationAndGeneration}{}\subsubsection*{{Presentation and generation}}\label{PresentationAndGeneration} \begin{prop} \label{}\hypertarget{}{} Let $C$ be a cofibrantly generated model category which is also [[proper model category|left proper]]. Then there exists a [[small set]] $S \subset Obj(C)$ of cofibrant objects which detect weak equivalences: a morphism $f : A \to B$ in $C$ is a weak equivalence, precisely if for all $s \in S$ the induced morphism of [[derived hom-spaces]] \begin{displaymath} \mathbb{R}Hom(s,f) : \mathbb{R}Hom(s,A) \to \mathbb{R}Hom(s,B) \end{displaymath} is a weak equivalence. \end{prop} This appears as (\hyperlink{Dugger}{Dugger, prop. A.5}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{on_simplicial_sets}{}\subsubsection*{{On simplicial sets}}\label{on_simplicial_sets} The \href{https://ncatlab.org/nlab/show/model+structure+on+simplicial+sets}{classical model category structure on simplicial sets} is cofibrantly generated: \begin{prop} \label{}\hypertarget{}{} $sSet_{Quillen}$ is a cofibrantly generated model category with \begin{itemize}% \item generating cofibrations the [[boundary]] inclusions $\partial \Delta[n] \to \Delta[n]$; \item generating acyclic cofibrations the [[horn]] inclusions $\Lambda^i[n] \to \Delta[n]$. \end{itemize} \end{prop} \hypertarget{on_topological_spaces}{}\subsubsection*{{On topological spaces}}\label{on_topological_spaces} The category of (based, compactly generated) topological spaces has a cofibrantly generated model structure (the [[classical model structure on pointed topological spaces]]) in which the set of cells is \begin{displaymath} I = \{S^{n-1}_+ \rightarrow D^n_+\}_{n\geq 0} \end{displaymath} and the set of acyclic cells is \begin{displaymath} J = \{D^n_+ \rightarrow (D^n \times I)_+\}_{n\geq 0} \,. \end{displaymath} (Here $+$ means disjoint basepoint, not northern hemisphere.) The category of unbased spaces has a similar cofibrantly generated model structure. (The [[classical model structure on topological spaces]].) \hypertarget{on_sequential_spectra}{}\subsubsection*{{On sequential spectra}}\label{on_sequential_spectra} The category of [[sequential prespectra]] has two cofibrantly generated model structures (the [[Bousfield-Friedlander model structures]]). Let $F_d A$ denote a prespectrum whose $n$th space is $\Sigma^{n-d} A$ when $n \geq d$, and $*$ otherwise. Then the \emph{level model structure} is generated by cells \begin{displaymath} I = \{F_d S^{n-1}_+ \rightarrow F_d D^n_+\}_{d,n\geq 0} \end{displaymath} ([[free spectra]] formed on the standard cells of the [[classical model structure on pointed topological spaces]]) and the set of acyclic cells is \begin{displaymath} J = \{F_d D^n_+ \rightarrow F_d (D^n \times I)_+\}_{d,n\geq 0} \end{displaymath} The \emph{stable model structure} has the same cells, but more acyclic cells, which in turn guarantees that the fibrant spectra are the $\Omega$-spectra. \hypertarget{on_structured_spectra}{}\subsubsection*{{On structured spectra}}\label{on_structured_spectra} The categories of [[symmetric spectra]] and [[orthogonal spectra]] have similar cofibrantly generated level and stable model structures ([[model structure on symmetric spectra]], [[model structure on orthogonal spectra]]). (see Mandell, May, Schwede, Shipley: \emph{[[Model categories of diagram spectra]]}.) \hypertarget{on_diagrams}{}\subsubsection*{{On diagrams}}\label{on_diagrams} The category of diagrams indexed by a fixed small category $D$, taking values in another cofibrantly generated model category $C$. (The [[model structure on functors]].) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item A cofibrantly generated model category that is also a [[locally presentable category]] is called a [[combinatorial model category]]. \item A cofibrantly generated model category for which the domains of the morphisms in $I$ and $J$ are [[compact object]]s or [[small object]]s is a [[cellular model category]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A standard textbook reference is \begin{itemize}% \item [[Philip Hirschhorn]], section 11 in \emph{Model categories and their localizations}, 2003 (\href{http://www.maths.ed.ac.uk/~aar/papers/hirschhornloc.pdf}{pdf}) \end{itemize} For the general case a useful reference is for instance the first section of \begin{itemize}% \item [[Tibor Beke]], \emph{Sheafifiable homotopy model categories}, Math. Proc. Cambridge Philos. Soc. \textbf{129} (2000), no. 3, 447--475.(\href{http://arxiv.org/abs/math/0102087}{math.CT/0102087}), \emph{Sheafifiable homotopy model categories. II}, J. Pure Appl. Algebra \textbf{164} (2001), no. 3, 307--324. \end{itemize} For the case of a [[presentable category]] a useful reference is [[Higher Topos Theory|HTT section A.1.2]]. Some useful facts are discussed in the appendix of \begin{itemize}% \item [[Dan Dugger]], \emph{Replacing model categories with simplicial ones} (\href{http://hopf.math.purdue.edu/Dugger/smod.pdf}{pdf}) \end{itemize} [[!redirects cofibrantly generated model categories]] [[!redirects cofibrantly generated model structure]] [[!redirects cofibrantly generated model structures]] [[!redirects generating cofibration]] [[!redirects generating cofibrations]] [[!redirects generating acyclic cofibration]] [[!redirects generating acyclic cofibrations]] [[!redirects cofibrantly generated]] \end{document}