\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cograph of a functor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{contents}{Contents}\dotfill \pageref*{contents} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{cographs_of_functors_between_0categories}{Cographs of functors between 0-categories}\dotfill \pageref*{cographs_of_functors_between_0categories} \linebreak \noindent\hyperlink{cographs_of_functors_between_1categories}{Cographs of functors between 1-categories}\dotfill \pageref*{cographs_of_functors_between_1categories} \linebreak \noindent\hyperlink{AdjointFunctorsInTermsOfCographs}{Adjoint functors in terms of cographs}\dotfill \pageref*{AdjointFunctorsInTermsOfCographs} \linebreak \noindent\hyperlink{cographs_of_functors_between_categories}{Cographs of functors between $(\infty,1)$-categories}\dotfill \pageref*{cographs_of_functors_between_categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak The notion of \emph{cograph of a functor} is dual to that of [[graph of a functor]]: for $f : C \to D$ a functor between [[n-categories]] is the fibration classified by the [[profunctor]] correspondence $\chi_f : C^{op}\times D \to (n-1)Cat$. But $f$ also determines a morphism $\bar f : I \to n Cat$ from the [[interval category]] $I$. The \textbf{cograph} of $f$ is the fibration classified by $\bar f$. Recall that the graph of a function $f: A \to B$ is the [[subset]] determined by the [[monomorphism]] $\langle 1, f \rangle: A \to A \times B$. This makes sense in any category with products. Under one definition, the notion of cograph of a function $f: A \to B$ is the categorically dual notion: it is the [[quotient object|quotient]] determined by the [[epimorphism]] $(f, 1): A \sqcup B \to B$. A more vivid presentation of cograph is given by the pictures we draw of functions $f: A \to B$: as [[directed graph]]s (in the graph-theoretic sense!) whose vertices are elements in $A \sqcup B$, with an edge drawn from $a$ to $f(a)$ for each $a$ in $A$. This can also be conceived as a [[poset]] $P_f$ with underlying set $A \sqcup B$, in which $a \leq f(a)$ and all other instances of $\leq$ are the reflexive ones. The connected components function $(P_f)_0 \to \pi_0(P_f)$ is then the cograph in the sense given above. In this article we give a definition of cograph which generalizes this poset picture of cograph of a function, and which applies to any functor between $n$-categories. \hypertarget{examples}{}\section*{{Examples}}\label{examples} \hypertarget{cographs_of_functors_between_0categories}{}\subsection*{{Cographs of functors between 0-categories}}\label{cographs_of_functors_between_0categories} In the case that $C, D$ are [[0-category|0-categories]], i.e. [[sets]], a functor $f : C \to D$ is just a [[function]] between sets. The cograph [[2-pullback]] \begin{displaymath} \itexarray{ cograph(f) &\to& {*} \\ \downarrow && \downarrow \\ I &\stackrel{\bar f}{\to}& Set } \end{displaymath} is computed by the ordinary [[pullback]] \begin{displaymath} \itexarray{ cograph(f) &\to& Set_{*} \\ \downarrow && \downarrow \\ I &\stackrel{\bar f}{\to}& Set } \end{displaymath} and identifies $cograph(f)$ with the [[category of elements]] of $\bar f$, as described there: the objects of $cograph(f)$ are the disjoint union of $C$ and $D$: $Obj(cograph(f)) = C \coprod D$ and the nontrivial morphisms are of the form $x \to y$ whenever $x \in C$, $y \in D$ and $f(x) = y$. What [[Bill Lawvere]] called the [[cograph of a function]] is the connected components $\pi_0(Cograph(f))$ of this category. \hypertarget{cographs_of_functors_between_1categories}{}\subsection*{{Cographs of functors between 1-categories}}\label{cographs_of_functors_between_1categories} For $f : C \to D$ an ordinary [[functor]], $cograph(f)$ is the category with $Obj(cograph(f)) = Obj(C) \coprod Obj(D)$ and with \begin{displaymath} Hom_{cograph(f)}(x,y) = \left\{ \itexarray{ Hom_C(x,y) & if\; x,y \in C \\ Hom_D(x,y) & if\; x,y \in D \\ Hom_D(f(x),y) & if\; x \in C ,y \in D \\ \emptyset & if\; x \in D ,y \in C } \right. \end{displaymath} with composition defined as induced from $C$, from $D$, and from the action of $f$. This is a special case of the [[cograph of a profunctor]], specialized to the representable [[profunctor]] $D(f-,-)$. This cograph is denoted $C \star^f D$ in section 2.3.1 (\_Correspondences\_) in \begin{itemize}% \item [[Jacob Lurie]], [[Higher Topos Theory]] \end{itemize} where it is understood as a generalization of the [[join of simplicial sets]] and where it serves as a motivation for the study of cographs of functors between [[(∞,1)-category|(∞,1)-categories]] discussed below. \hypertarget{AdjointFunctorsInTermsOfCographs}{}\subsection*{{Adjoint functors in terms of cographs}}\label{AdjointFunctorsInTermsOfCographs} As emphasized in the beginning of section 5.2 there, cographs of functors may be used to characterize [[adjoint functors]]. This is just one way of stating the characterization of adjoints in terms of [[profunctors]] (which in turn makes sense in any [[2-category equipped with proarrows]]). \begin{prop} \label{}\hypertarget{}{} Two functors $L : C \to D$ and $R : D \to C$ are [[adjoint functors]] precisely if $cograph(L)$ and $cograph(R^{op})^{op}$ are isomorphic under $C$ and $D$: \begin{displaymath} (L \dashv R) \Leftrightarrow (cograph(L) \cong cograph(R^{op})^{op}) \end{displaymath} where the isomorphism is in the [[co-slice category]] $(C\sqcup D)/Cat$. \end{prop} More precisely, there is a bijection between adjunctions $L\dashv R$ and isomorphisms as above. \begin{proof} The category $cograph(L)$ is the category with $Obj(cograph(L)) = Obj(C) \coprod Obj(D)$ and with \begin{displaymath} Hom_{cograph(L)}(x,y) = \left\{ \itexarray{ Hom_C(x,y) & if\; x,y \in C \\ Hom_D(x,y) & if\; x,y \in D \\ Hom_D(L(x),y) & if\; x \in C ,y \in D \\ \emptyset & if\; x \in D ,y \in C } \right. \end{displaymath} (This set is also called the set of [[heteromorphisms]] between objects in $C$ and $D$.) The category $cograph(R^{op})^{op}$ accordingly is the category with $Obj(cograph(R)) = Obj(C) \coprod Obj(D)$ and with \begin{displaymath} Hom_{cograph(R^{op})^{op}}(x,y) = \left\{ \itexarray{ Hom_C(x,y) & if x,y \in C \\ Hom_D(x,y) & if x,y \in D \\ Hom_C(x,R(y)) & if x \in C ,y \in D \\ \emptyset & if x \in D ,y \in C } \right. \end{displaymath} Evidently these categories are isomorphic under $C$ and $D$ precisely if for all $x \in C, y \in D$ we have \begin{displaymath} Hom_D(L(x),y) \cong Hom_C(x,R(y)) \,. \end{displaymath} naturally in $x$ and $y$. It is natural because the isomorphism is an isomorphism of categories, and the functoriality of $Hom_D(L(-),-)$ and $Hom_C(-,R(-))$ is encoded by composition in the cograph. Of course, such a natural isomorphism is precisely the structure of an adjunction $L\dashv R$. \end{proof} Note also that just as $cograph(L)$ is the cograph of the profunctor $D(L-,-)$, also $cograph(R^{op})^{op}$ is the cograph of the profunctor $C(-,R-)$. Thus, this theorem can be viewed as one way of stating the characterization of adjunctions in terms of homsets, as can be \href{http://ncatlab.org/nlab/show/2-category+equipped+with+proarrows#HomsetAdjn}{formulated} in terms of profunctors in any 2-category equipped with proarrows. \hypertarget{cographs_of_functors_between_categories}{}\subsection*{{Cographs of functors between $(\infty,1)$-categories}}\label{cographs_of_functors_between_categories} In the context of [[(∞,1)-category]] theory there is a good theory of [[Cartesian fibrations]] $X \to S$ and of their classification by [[(∞,1)-functors]] $S^{op} \to (\infty,1)Cat$ to the [[(∞,1)-category of (∞,1)-categories]] as described at [[universal fibration of (∞,1)-categories]]. Accordingly, the above notion of cograph of a functor has a direct generalization to [[(∞,1)-functors]]: \begin{defn} \label{}\hypertarget{}{} For $f : C \to D$ an [[(∞,1)-functor]], identified with a morphism \begin{displaymath} \bar f : I \to (\infty,1)Cat \end{displaymath} in the [[(∞,1)-category of (∞,1)-categories]], it \textbf{cograph} is the [[Cartesian fibration]] $cograph(f) \to I$ classified by it. In terms of the [[universal fibration of (∞,1)-categories]] this is the [[homotopy pullback]] \begin{displaymath} \itexarray{ cograph(f) &\to& S^{op} \\ \downarrow && \downarrow \\ I &\stackrel{\bar f}{\to}& (\infty,1)Cat } \,. \end{displaymath} \end{defn} As for every [[Cartesian fibration]] the functor $f : C \to D$ is determined uniquely up to equivalence by its cograph. In general, obtaining the classifying $(\infty,1)$-functor from a given [[Cartesian fibration]] may be difficult. In the special case of cographs as Cartesian fibrations over the simple [[interval category]] it is easier. This is discussed in the following: \ldots{} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[graph of a functor]] \item \textbf{cograph of a functor}, [[cograph of a profunctor]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of cographs of $(\infty,1)$-functors and the theory of how to re-obtain $(\infty,1)$-functors from their cographs is the content of section 5.2.1, \emph{Correspondences and associated functors}, of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} . \end{itemize} \end{document}