\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cogroup} \hypertarget{cogroup_objects}{}\section*{{Cogroup objects}}\label{cogroup_objects} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{relationship_to_group_objects}{Relationship To Group Objects}\dotfill \pageref*{relationship_to_group_objects} \linebreak \noindent\hyperlink{relationship_to_other_objects}{Relationship to Other Objects}\dotfill \pageref*{relationship_to_other_objects} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Cogroup objects} are [[group object]] in an [[opposite category]], and often one takes the [[opposite category]] of group object in an opposite category to be the category of cogroup objects. The defining property of a cogroup object is that morphisms \emph{out} of it form a [[group]]. Specifically, if $C$ is a category, then $G$ is a cogroup object in $C$ if $\operatorname{Hom}(G,X)$ is a group for any object $X$ in $C$ (and the group structure must be natural in $X$). There are many examples of cogroup objects. Perhaps the most well-known are the [[n-sphere]] in the [[homotopy category]] of [[pointed topological spaces]], $\operatorname{hTop}_*$. Then the fact that $S^n$ is a cogroup object in $\operatorname{hTop}$ is precisely the statement that the [[homotopy group]] $\pi_n(X)$ for $n \geq 1$ is indeed a [[group]], naturally in $X$, for all topological spaces $X$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The basic definition is as follows. \begin{defn} \label{}\hypertarget{}{} Let $C$ be a category. To give an object $G$ of $C$ a \textbf{cogroup structure} in $C$ is to give the functor $\operatorname{Hom}(G,-)$ a [[lift]] from $\operatorname{Set}$ to $\operatorname{Grp}$. A \textbf{cogroup object} in $C$ is an object $G$ together with a choice of cogroup structure. A \textbf{morphism of cogroup objects} $G_1 \to G_2$ is a morphism in $C$ between the underlying objects of the $G_i$ such that the [[natural transformation]] $\operatorname{Hom}(G_2,-) \to \operatorname{Hom}(G_1,-)$ lifts to a natural transformation of functors into $\operatorname{Grp}$. \end{defn} Thus cogroup objects and their morphisms can be thought of as the category of [[representable functors]] from $C$ to $\operatorname{Grp}$. Providing $C$ has enough coproducts of $G$ (the $0,1,2,3$th copowers to be precise), the concept of a cogroup structure on $G$ can be internalised. \begin{theorem} \label{}\hypertarget{}{} To give an object $G$ of $C$ a cogroup structure is equivalent to choosing morphisms $\mu \colon G \to G \amalg G$, $\eta \colon G \to 0_C$, and $\iota \colon G \to G$ satisfying the diagrams for associativity, unit, and inverse but \emph{the other way around}. \end{theorem} Here, the phrase ``the other way around'' means: take the normal diagrams for a [[group object]] that express the properties of associativity, unit, and inverses, invert all the arrows, and replace products by coproducts. \hypertarget{relationship_to_group_objects}{}\subsection*{{Relationship To Group Objects}}\label{relationship_to_group_objects} A cogroup object in a category, say $C$, is nothing more than a [[group object]] in the [[opposite category]]: $C^{op}$. However, morphisms in the cogroup category go the other way around. That is to say, with the obvious notation: \begin{displaymath} C\operatorname{coGrp} = (C^{op}\operatorname{Grp})^{op} \end{displaymath} \hypertarget{relationship_to_other_objects}{}\subsection*{{Relationship to Other Objects}}\label{relationship_to_other_objects} Of course, there is nothing special about groups here. The same style of definition works for any [[variety of algebras]] in the sense of universal algebra, where $C coAlg_T \coloneqq (C^{op}Alg_T)^{op}$. Some terminological care should be taken in the case of [[comonoid]], which makes sense in any [[monoidal category]], not just cocartesian monoidal categories which is the general default environment for discussing co-$T$-algebras. Thus, check with the author to see which monoidal product is meant; in the case of comonoid it's likely that it's \emph{not} the cocartesian notion that is intended. Whereas in the case of cogroups, confusion is not so likely: one needs the cocartesian structure (codiagonals, etc.) essentially because the axioms of a group involve duplication of variables, whereas this is not the case for axioms of a monoid. (Cf. the distinction between [[operad]] and [[Lawvere theory]], where the latter can be viewed as a kind of ``cartesian operad''.) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{enumerate}% \item All [[n-spheres]] for all $n$ are cogroup objects in the [[homotopy category]] of [[based topological spaces]], $\operatorname{hTop}_*$. This is the origin of the [[group]] structure on [[homotopy groups]]. it is also crucial in the structure of the [[Brown representability theorem]]. The higher spheres are actually \emph{abelian} cogroup objects, as demonstrated by the fact that $\pi_n(X)$ is abelian for $n \ge 2$. \item More generally, any [[suspension]] is a cogroup object with the ``pinch'' map as the comultiplication. See at \emph{[[suspensions are H-cogroup objects]]}. (Since the $0$-sphere is not a suspension in $\operatorname{hTop}_*$, but only in $\operatorname{hTop}$, it need not be a cogroup and in fact is not.) This is dual to, and equivalent to, the statement that (based) [[loop spaces]] are group objects in $\operatorname{hTop}_*$ since there is an [[adjunction]], internal to $\operatorname{hTop}_*$: \begin{displaymath} \operatorname{Hom}(\Sigma X,Y) \cong \operatorname{Hom}(X,\Omega Y) \end{displaymath} \item There are examples of spaces that are cogroups in $\operatorname{hTop}_*$ that are \textbf{not} suspensions, see Bernstein \& Harper \emph{Cogroups which are not suspensions}. Note that cogroups in $\operatorname{hTop}_*$ are the same as [[co-H-spaces]] which are additionally (co-)associative and have (co-)inverses. \item Cogroup objects in the [[Grp|category of groups]] are [[free groups]], and to give a free group the structure of a cogroup object is the same a choosing a generating set. This is an old result of D.M. Kan's. \item On the other hand, every abelian group is again an abelian cogroup since $\operatorname{Ab}$ is self-enriched. Indeed, in an [[abelian category]] every object is simultaneously an abelian group object and an abelian cogroup object. In $\operatorname{Ab}$, the abelian cogroup object structure is unique, with comultiplication given by the [[diagonal morphism]]. \item In [[Set]], the only cogroup object (abelian or otherwise) is the [[empty set]]. This is because the counit map must be a morphism from $X$ to the terminal object \emph{of the opposite category}. In the case of $\operatorname{Set}$, this is the empty set. \item This extends further: any category with a [[faithful functor]] to $\operatorname{Set}$ which preserves an [[initial object]] will have no non-trivial cogroup objects. In particular, the category [[Top]] of \emph{unbased} topological spaces has only the [[empty space]] as a cogroup object. \item The case of cogroups, and some other co-things, in certain other varieties of algebras has been extensively studied by Bergman and Hausknecht in \emph{Co-groups and co-rings in categories of associative rings}, (MR1387111) In particular, a co-group in the category of (unital) commutative rings is a commutative [[Hopf ring]] and a cogroup in the category of (unital) commutative $k$-algebras is a commutative [[Hopf algebra|Hopf]] $k$-algebra; a fact highlighted in homotopy theory by [[Haynes Miller]] (in view of his generalization to [[commutative Hopf algebroid]]s as cogroupoids in commutative algebra) in the context of discussion of [[dual Steenrod algebras]], see (\hyperlink{Ravenel86}{Ravenel 86, appendix A}) for review. \end{enumerate} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion of commutative [[Hopf algebras]] as cogroups is in \begin{itemize}% \item [[Doug Ravenel]], appendix A1 of \emph{[[Complex cobordism and stable homotopy groups of spheres]]}, Academic Press 1986 \end{itemize} Cogroups in the category of (graded or not) associative algebras are very rare (unlike Hopf algebras) -- in fact the underlying algebras are free; this has been clear since \begin{itemize}% \item Israel Berstein, On cogroups in the category of graded algebras. Trans. Amer. Math. Soc. 115 (1965), 257--269 \href{http://www.jstor.org/stable/1994268}{jstor} \end{itemize} This fact is later observed in bigger generality in \begin{itemize}% \item [[Benoit Fresse]], \emph{Cogroups in algebras over an operad are free algebras}, Commen. Math. Helv. \textbf{73}:4, 1998, 637--676 \href{http://dx.doi.org/10.1007/s000140050072}{doi} \end{itemize} [[!redirects cogroups]] [[!redirects co-H-object]] [[!redirects cogroup object]] [[!redirects cogroup objects]] [[!redirects co-group object]] [[!redirects co-group]] \end{document}