\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{coherent logic} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{coherent_logic}{}\section*{{Coherent logic}}\label{coherent_logic} \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{variations}{Variations}\dotfill \pageref*{variations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \textbf{Coherent logic} is a fragment of (finitary) [[first-order logic]] which allows only the connectives and quantifiers \begin{itemize}% \item $\wedge$ ([[and]]), \item $\vee$ ([[or]]), \item $\top$ ([[true]]), \item $\bot$ ([[false]]), \item $\exists$ ([[existential quantifier]]). \end{itemize} A \textbf{coherent formula} is a [[formula]] in coherent logic. A \textbf{coherent sequent} is a [[sequent]] of the form $\varphi \vdash \psi$, where $\varphi$ and $\psi$ are coherent formulas, possibly with [[free variables]] $x_1,\dots,x_n$. In full first-order logic, such a sequent is equivalent to the single formula \begin{displaymath} \forall x_1, \dots, \forall x_n (\varphi \Rightarrow \psi) \end{displaymath} (in the empty [[context]]). Of course, this latter formula is not coherent, but this shows that when we deal with coherent \emph{sequents} rather than merely formulas, it can also be thought of as allowing one instance of $\Rightarrow$ and a string of $\forall$s at the very outer level of a formula. Coherent logic (including sequents, as above) is the [[internal logic]] of a [[coherent category]]. The [[classifying topos]] of a coherent theory is a [[coherent topos]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Any (finitary) [[algebraic theory]] is coherent. \item A good example of a coherent theory that is not [[algebraic theory|algebraic]] (in any of the usual senses, although it comes from algebra) is the theory of a [[local ring]]; a similar example is the theory of a [[discrete field]]. \item The theory of a [[total order]] is coherent, though also not algebraic. The theory of a [[partial order]] is [[essentially algebraic theory|essentially algebraic]], but the totality axiom $\vdash_{x,y} (x\le y) \vee (y\le x)$ is coherent but not essentially algebraic. \item The theory of a [[linear order]] is (seemingly) not coherent if we use the ``connectedness'' axiom $(x\nless y), (y\nless x) \vdash (x=y)$, which is not coherent since negation is not allowed in coherent formulas. We can express one outer negation, however, as in the irreflexivity axiom $(x\lt x)\vdash \bot$. Another solution is to use the ``trichotomy'' axiom $\top \vdash (x=y) \vee (x\lt y) \vee (y\lt x)$ instead, in order to get an axiomatisation of ``coherent'' linear orderings. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Coherent logic has many pleasing properties. \begin{itemize}% \item Every finitary [[first-order logic|first-order theory]] is equivalent, over [[classical logic]], to a coherent theory. This theory is called its \emph{Morleyization} and can be obtained by adding new relations representing each first-order formula and its negation, with axioms that guarantee (over classical logic) these relations are interpreted correctly (using the facts that $(P\Rightarrow Q) \dashv\vdash (\neg P \vee Q)$ and $(\forall x, P) \dashv\vdash (\neg \exists x, \neg P)$ in classical logic). See D1.5.13 in [[Sketches of an Elephant]], or Prop. 3.2.8 in Makkai-Par\'e{}. \item By (one of the theorems called) [[Deligne completeness theorem|Deligne's theorem]], every [[coherent topos]] has [[point of a topos|enough points]]. In particular, this applies to the classifying toposes of coherent theories. It follows that models in [[Set]] are sufficient to detect provability in coherent logic. By Morleyization, we can obtain from this the classical [[completeness theorem for first-order logic]]. See for instance 6.2.2 in Makkai-Reyes. \item Coherent logic also satisfies a \emph{definability theorem}: if a relation can be constructed in every [[Set]]-model of a coherent theory $T$, in a [[natural transformation|natural]] way, then that relation is named by some coherent formula in $T$. See chapter 7 of Makkai-Reyes or D3.5.1 in [[Sketches of an Elephant]]. \item It follows that if a morphism of coherent theories (i.e. an interpretation of one coherent theory in another) induces an equivalence of their categories of models in $Set$, then it is a [[Morita equivalence]] of theories (i.e. induces an equivalence of classifying toposes, hence an equivalence of categories of models in all [[Grothendieck toposes]]). This is called [[conceptual completeness]]; see 7.1.8 in Makkai-Reyes or D3.5.9 in [[Sketches of an Elephant]]. (Note, though, that two coherent theories can have equivalent categories of models in $Set$ without being Morita equivalent, if the former equivalence is not induced by a morphism of theories; see for instance D3.5.4 in the Elephant.) \end{itemize} However, here is a property which one might expect coherent theories to have, but which they do not. \begin{itemize}% \item The category of models of a coherent theory (in [[Set]]) is always an [[accessible category]] (this is true more generally for models of any logical theory). However, it need not be \emph{finitely} accessible (i.e. $\omega$-accessible). An example is given in Adamek-Rosicky 5.36: the theory of sets equipped with a binary relation $\prec$ such that for all $x$ there exists a $y$ with $x\prec y$. Then the model $(\mathbb{N},\lt)$ of this theory does not admit any morphism from an ($\omega$-)compact object. (However, many coherent theories do have a finitely accessible category of $Set$-models.) \end{itemize} \hypertarget{variations}{}\subsection*{{Variations}}\label{variations} \begin{itemize}% \item Sometimes coherent logic is called \emph{geometric logic}, but that term is now more commonly used for the analogous fragment of infinitary logic which allows disjunctions over arbitrary sets (though still only finitary conjunctions). See [[geometric logic]]. \item Conversely, geometric logic is sometimes called \emph{coherent} , e.g. in Reyes (\hyperlink{Reyes}{1977}), so that coherent logic in the nLab terminology corresponds to the \emph{finitary} fragment only. \item Occasionally the [[existential quantifiers]] in coherent logic are further restricted to range only over \emph{finitely presented types}. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[finitely complete category]], [[cartesian functor]], [[cartesian logic]], [[cartesian theory]] \item [[regular category]], [[regular functor]], [[regular logic]], [[regular theory]], [[regular coverage]], [[regular topos]] \item [[coherent category]], [[coherent functor]], \textbf{coherent logic}, [[coherent theory]], [[coherent coverage]], [[coherent topos]] \item [[geometric category]], [[geometric functor]], [[geometric logic]], [[geometric theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A survey of results on geometric and coherent logic is in \begin{itemize}% \item [[Gonzalo Reyes]], \emph{Sheaves and concepts: A model-theoretic interpretation of Grothendieck topoi} , Cah. Top. Diff. G\'e{}o. Cat. \textbf{XVIII} no.2 (1977) pp.405-437. (\href{http://www.numdam.org/item?id=CTGDC_1977__18_2_105_0}{numdam}) \end{itemize} A standard textbook account of coherent logic (called `geometric logic' there) can be found in \begin{itemize}% \item [[Saunders Mac Lane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} , Springer Heidelberg 1994. \end{itemize} Properties of the generic model of a coherent theory are investigated in \begin{itemize}% \item Marc Bezem, [[Ulrik Buchholtz]], [[Thierry Coquand]], \emph{Syntactic Forcing Models for Coherent Logic} , arXiv:72.07743 (2017). (\href{https://arxiv.org/abs/1712.07743}{abstract}) \end{itemize} Else consider the monographs \begin{itemize}% \item [[Michael Makkai]] and [[Gonzalo Reyes]], \emph{First Order Categorical Logic: Model-theoretical methods in the theory of topoi and related categories}, Springer-Verlag, 1977. \item [[Michael Makkai]] and [[Robert Paré]], \emph{Accessible categories} \item [[Peter Johnstone]], [[Sketches of an Elephant]] vol 2. Part D \item [[Jiri Adamek]] and [[Jiri Rosicky]], \emph{Locally presentable and accessible categories} \end{itemize} [[!redirects coherent logic]] [[!redirects coherent logics]] [[!redirects coherent theory]] [[!redirects coherent theories]] [[!redirects coherent formula]] [[!redirects coherent formulas]] [[!redirects coherent sequent]] [[!redirects coherent sequents]] [[!redirects Morleyization]] \end{document}