\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{coherent sheaf} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{over_a_ringed_topos}{Over a ringed topos}\dotfill \pageref*{over_a_ringed_topos} \linebreak \noindent\hyperlink{over_a_structured_topos}{Over a structured $(\infty,1)$-topos}\dotfill \pageref*{over_a_structured_topos} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{historical_note_and_definition_variants}{Historical note and definition variants}\dotfill \pageref*{historical_note_and_definition_variants} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{coherent sheaf of modules} is a geometric globalization of the notion of [[coherent module]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{over_a_ringed_topos}{}\subsubsection*{{Over a ringed topos}}\label{over_a_ringed_topos} Let $(X,\mathcal{O})$ be a [[ringed space]] or, more generally, a [[ringed site]]. A [[sheaf]] $\mathcal{E}$ on $X$ of $\mathcal{O}$-[[module]]s is \begin{itemize}% \item \textbf{finitely generated}, or of \textbf{finite type} , if every point $x \in X$ has an open neighbourhood such that there is a surjective morphism \begin{displaymath} \mathcal{O}^n|_U \to \mathcal{E}|_U \end{displaymath} from a [[free module]] to $\mathcal{E}|_{U}$, where $n$ is finite. \item \textbf{coherent} if it is \begin{enumerate}% \item finitely generated \item for every open $U$ in the base space (resp. every object $U$ in the base site), every finite $p \in \mathbb{N}$ and every morphism \begin{displaymath} \mathcal{O}^p|_U\to \mathcal{E}|_U \end{displaymath} of $\mathcal{O}|_U$-modules has a finitely generated [[kernel]]. \end{enumerate} \item \textbf{finitely presented} if there is an exact sequence of the form \begin{displaymath} \mathcal{O}^p\to\mathcal{O}^n\to\mathcal{E}\to 0 \end{displaymath} with $p$ and $n$ finite. Every finitely presented $\mathcal{O}$-module is finitely generated. \item \textbf{[[quasicoherent sheaf|quasi coherent]]} if it is \emph{locally} -- on a cover $\{U_i\}$ -- \emph{presentable}, i.e. for each $i$ there is an [[exact sequence]]s \begin{displaymath} \mathcal{O}^{I_i}|_{U_i} \to \mathcal{O}^{J_i}|_{U_i} \to \mathcal{E}|_{U_i} \to 0\,, \end{displaymath} where $I_i$ and $J_i$ may be infinite, i.e. $\mathcal{E}$ is locally the [[cokernel]] of [[free module]]s. For more see [[quasicoherent sheaf]]. \end{itemize} \hypertarget{over_a_structured_topos}{}\subsubsection*{{Over a structured $(\infty,1)$-topos}}\label{over_a_structured_topos} Over a [[spectral Deligne-Mumford stack]]: ([[Quasi-Coherent Sheaves and Tannaka Duality Theorems|Lurie QCoh, def. 2.6.20]]) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} For a coherent sheaf $\mathcal{E}$ over a [[ringed space]], for every point $y$ in the base space $X$ there is a neighborhood $V$ such that the $\mathcal{O}_X(V)$-module $\mathcal{E}(V)$ of sections of $\mathcal{E}$ over $V$ is finitely presented. On a [[noetherian scheme]] the notions of finitely presented and coherent sheaves of $\mathcal{O}$-modules agree, but this is not true on a general scheme or general analytic space; sometimes even the structure sheaf $\mathcal{O}$ itself is a counterexample (not coherent while finitely presented). The notion of coherent sheaf behaves well on the category of noetherian schemes. On a general topological space, by a basic result of Serre, if two of the sheaves of $\mathcal{O}$-modules in a [[short exact sequence]] \begin{displaymath} 0\to \mathcal{E}\to\mathcal{E}'\to \mathcal{E}''\to 0 \end{displaymath} are coherent then so is the third. All this holds even if $\mathcal{O}$ is a sheaf of noncommutative [[rings]]. For commutative $\mathcal{O}$, the inner hom $Hom_{\mathcal{O}}(\mathcal{E},\mathcal{F})$ in the category of sheaves of $\mathcal{O}$-modules is coherent if $\mathcal{E},\mathcal{F}$ are coherent. A theorem of Serre says that the category of coherent sheaves over a projective variety of the form $Proj R$ where $R$ is a graded commutative Noetherian ring is equivalent to the localization of the category of finitely generated graded $R$-modules modulo its (``torsion'') subcategory of (finitely generated graded) $R$-modules of finite length. \hypertarget{historical_note_and_definition_variants}{}\subsection*{{Historical note and definition variants}}\label{historical_note_and_definition_variants} First works on coherent sheaves in complex analytic geometry. Serre adapted their work to algebraic framework in his famous article [[FAC]]. Hartshorne's definitions are changed/adapted to the special setup of Noetherian schemes with the excuse that the coherence does not behave that well otherwise; thus they differ from the definitions in [[EGA]] and [[FAC]]. [[A. Vistoli]] commented at MathOverflow \href{http://mathoverflow.net/questions/68150}{here} that for some categorical purposes \begin{quote}% one should interpret ``coherent'' as meaning ``quasi-coherent of finite presentation''. The notion of coherent sheaf, as defined in EGA, is not functorial, that is, pullbacks of coherent sheaves are not necessarily coherent. Hartshorne's book defines ``coherent'' as ``quasi-coherent and finitely generated'', but this is a useless notion when working with non-noetherian schemes. \end{quote} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[degree of a coherent sheaf]], [[rank of a coherent sheaf]] [[slope of a coherent sheaf]], \item [[stable coherent sheaf]] \item [[quasicoherent sheaf]] \item [[triangulated categories of sheaves]] \item [[Bondal-Orlov reconstruction theorem]] \item [[coherent cohomology]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[J-P. Serre]], \emph{[[Faisceaux algébriques cohérents]]}, Ann. of Math. (2) \textbf{61}, (1955) 197--278, \href{http://dx.doi.org/10.2307/1969915}{doi}. \item H. Grauert, R. Remmert, \emph{Coherent analytic sheaves}, Grundlehren der Math. Wissenschaften \textbf{265}, Springer 1984. xviii+249 pp. \item M. M. [[Kapranov]], \emph{On the derived categories of coherent sheaves on some homogeneous spaces}, Invent. Math. 92 (1988), no. 3, 479--508, \href{http://dx.doi.org/10.1007/BF01393744}{doi}. \item [[D. O. Orlov]], \emph{ } (\href{http://www.mathnet.ru/php/getFT.phtml?jrnid=rm&paperid=629&what=fullt&option_lang=rus}{pdf}, Russian) Uspekhi Mat. Nauk \textbf{58} (2003), no. 3(351), 89--172; Engl. transl. \emph{Derived categories of coherent sheaves and equivalences between them}, Russian Math. Surveys \textbf{58} (2003), no. 3, 511--591. \item V. D. Golovin, \emph{Homology of analytic sheaves and duality theorems}, Contemporary Soviet Mathematics (1989) viii+210 pp. transl. from Russian original , Moskva, Nauka 1986. (192 pp.) \item [[EGA]] 0.5.3.1 \item Qing Liu, \emph{Algebraic geometry and arithmetic curves}, 5.1.3 \end{itemize} Categories of ind-coherent sheaves on schemes and stacks are studied in [[Dennis Gaitsgory]], \emph{Notes on Geometric Langlands: ind-coherent sheaves}, \href{http://arxiv.org/abs/1105.4857}{arxiv/1105.4857} Discussion in [[(∞,1)-topos theory]] \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Quasi-Coherent Sheaves and Tannaka Duality Theorems]]} \end{itemize} category: sheaf theory, algebraic geometry [[!redirects coherent sheaves]] \end{document}