\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cohesive (infinity,1)-topos} \begin{quote}% This entry is about a refinement of the concept of [[cohesive topos]]. The definition here expresses an intuition not unrelated to that at [[cohesive (∞,1)-presheaf on E-∞ rings]] but the definitions are unrelated and apply in somewhat disjoint contexts. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohesive_toposes}{}\paragraph*{{Cohesive $\infty$-Toposes}}\label{cohesive_toposes} [[!include cohesive infinity-toposes - contents]] \hypertarget{discrete_and_concrete_objects}{}\paragraph*{{Discrete and concrete objects}}\label{discrete_and_concrete_objects} [[!include discrete and concrete objects - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ExternalDefinition}{Externally}\dotfill \pageref*{ExternalDefinition} \linebreak \noindent\hyperlink{InternalDefinition}{Internally}\dotfill \pageref*{InternalDefinition} \linebreak \noindent\hyperlink{DefinitionInHomotopyTypeTheory}{In homotopy type theory}\dotfill \pageref*{DefinitionInHomotopyTypeTheory} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{AsAPointLikeSpace}{As a point-like space}\dotfill \pageref*{AsAPointLikeSpace} \linebreak \noindent\hyperlink{OverAnInfinityCohesiveSite}{Over an $\infty$-cohesive site}\dotfill \pageref*{OverAnInfinityCohesiveSite} \linebreak \noindent\hyperlink{General}{General}\dotfill \pageref*{General} \linebreak \noindent\hyperlink{OverArbitraryBases}{Base of discrete and codiscrete objects}\dotfill \pageref*{OverArbitraryBases} \linebreak \noindent\hyperlink{FactorizationSystemsForPi}{Factorization systems associated to $\mathbf{\Pi}$}\dotfill \pageref*{FactorizationSystemsForPi} \linebreak \noindent\hyperlink{Structures}{Structures in a cohesive $(\infty,1)$-topos}\dotfill \pageref*{Structures} \linebreak \noindent\hyperlink{types_of_cohesion}{Types of cohesion}\dotfill \pageref*{types_of_cohesion} \linebreak \noindent\hyperlink{infinitesimal_cohesion}{Infinitesimal cohesion}\dotfill \pageref*{infinitesimal_cohesion} \linebreak \noindent\hyperlink{DifferentialCohesion}{Differential cohesion}\dotfill \pageref*{DifferentialCohesion} \linebreak \noindent\hyperlink{locally_ringed_cohesion}{Locally ringed cohesion}\dotfill \pageref*{locally_ringed_cohesion} \linebreak \noindent\hyperlink{Examples}{Examples of cohesive $\infty$-toposes}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{cohesive_diagram_toposes}{Cohesive diagram $(\infty,1)$-toposes}\dotfill \pageref*{cohesive_diagram_toposes} \linebreak \noindent\hyperlink{CohesiveDiagramToposes}{Cohesive diagrams in a cohesive $(\infty,1)$-topos}\dotfill \pageref*{CohesiveDiagramToposes} \linebreak \noindent\hyperlink{SimplicialObjctsInACohesiveTopos}{Simplicial objects in a cohesive $(\infty,1)$-topos}\dotfill \pageref*{SimplicialObjctsInACohesiveTopos} \linebreak \noindent\hyperlink{bundles_of_cohesive_spectra}{Bundles of cohesive spectra}\dotfill \pageref*{bundles_of_cohesive_spectra} \linebreak \noindent\hyperlink{global_equivariant_homotopy_theory}{Global equivariant homotopy theory}\dotfill \pageref*{global_equivariant_homotopy_theory} \linebreak \noindent\hyperlink{ExamplesFromCohesiveSitesOnfDefinition}{From $\infty$-Cohesive sites of definition}\dotfill \pageref*{ExamplesFromCohesiveSitesOnfDefinition} \linebreak \noindent\hyperlink{DiscreteInfinityGroupoids}{Discrete $\infty$-groupoids}\dotfill \pageref*{DiscreteInfinityGroupoids} \linebreak \noindent\hyperlink{topological_groupoids}{Topological $\infty$-groupoids}\dotfill \pageref*{topological_groupoids} \linebreak \noindent\hyperlink{smooth_groupoids}{Smooth $\infty$-groupoids}\dotfill \pageref*{smooth_groupoids} \linebreak \noindent\hyperlink{complex_analytic_groupoids}{Complex analytic $\infty$-groupoids}\dotfill \pageref*{complex_analytic_groupoids} \linebreak \noindent\hyperlink{formal_smooth_groupoids}{Formal smooth $\infty$-groupoids}\dotfill \pageref*{formal_smooth_groupoids} \linebreak \noindent\hyperlink{smooth_super_groupoids}{Smooth Super $\infty$-groupoids}\dotfill \pageref*{smooth_super_groupoids} \linebreak \noindent\hyperlink{smooth_groupoids_over_algebraic_stacks}{Smooth $\infty$-groupoids over algebraic $\infty$-stacks}\dotfill \pageref*{smooth_groupoids_over_algebraic_stacks} \linebreak \noindent\hyperlink{arithmetic_groupoids}{$E_\infty$-Arithmetic $\infty$-groupoids}\dotfill \pageref*{arithmetic_groupoids} \linebreak \noindent\hyperlink{smooth_cohesion_over_arbitrary_base_toposes}{Smooth cohesion over arbitrary base $\infty$-toposes}\dotfill \pageref*{smooth_cohesion_over_arbitrary_base_toposes} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{precursors}{Precursors}\dotfill \pageref*{precursors} \linebreak \noindent\hyperlink{on_cohesive_toposes_proper}{On cohesive $(\infty,1)$-toposes proper}\dotfill \pageref*{on_cohesive_toposes_proper} \linebreak \noindent\hyperlink{ReferencesInHoTT}{In homotopy type theory}\dotfill \pageref*{ReferencesInHoTT} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{cohesive $(\infty,1)$-topos} is a [[big topos|gros]] [[(∞,1)-topos]] $\mathbf{H}$ that provides a context of generalized [[spaces]] in which [[higher geometry]] makes sense, in particular [[higher differential geometry]]. See also at \emph{[[motivation for cohesive toposes]]} for a non-technical discussion. Technically, it is an $(\infty,1)$-topos whose [[global section]] [[(∞,1)-geometric morphism]] $(Disc \dashv \Gamma): \mathbf{H} \stackrel{\overset{Disc}{\leftarrow}}{\underset{\Gamma}{\longrightarrow}}$ [[∞Grpd]] admits a further [[left adjoint|left]] [[adjoint (∞,1)-functor]] $\Pi$ and a further right adjoint $coDisc$: \begin{displaymath} (\Pi \dashv Disc \dashv \Gamma \dashv coDisc) : \mathbf{H} \to \infty Grpd \end{displaymath} with $Disc$ and $coDisc$ both [[full and faithful (∞,1)-functor]]s and such that $\Pi$ moreover preserves finite [[(∞,1)-limit|(∞,1)-product]]s. Here \begin{enumerate}% \item the existence of $coDisc$ induces a sub-[[(∞,1)-quasitopos]] $Conc(\mathbf{H}) \hookrightarrow \mathbf{H}$ of \emph{[[concrete (∞,1)-sheaf|concrete objects]]} that behave like [[∞-groupoid]]s \emph{equipped with extra cohesive structure} , such as with [[topology|continuous structure]], [[smooth structure]], etc. \item the existence of $\Pi$ induces a notion of [[geometric homotopy groups in an (∞,1)-topos|geometric]] [[fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos|fundamental ∞-groupoid]], hence under $|-| : \infty Grpd \simeq$ [[Top]] of [[geometric realization]] $|\Pi(-)|$ of objects in $\mathbf{H}$. \end{enumerate} The functor $\Gamma$ itself may be thought of as sending a cohesive [[∞-groupoid]] $X$ to its underlying bare $\infty$-groupoid $\Gamma(X)$. This is $X$ with all \emph{cohesion forgotten} (for instance with the continuous or the smooth structure forgotten). Conversely, $Disc$ and $CoDisc$ send an $\infty$-groupoid $A$ either to the [[discrete space|discrete ∞-groupoid]] $Disc(A)$ with \emph{discrete} cohesive structure (for instance with [[discrete topology]]) or to the [[codiscrete space|codiscrete ∞-groupoid]] $Codisc(A)$ with the \emph{codiscrete} cohesive structure (for instance with [[codiscrete topology]]). This kind of [[adjoint quadruple]], directly analogous to the structure introduced by [[William Lawvere]] for [[cohesive toposes]], induces three [[adjoint modalities]] which in turn are adjoint to each other, to yield the adjoint string [[shape modality]] $\dashv$ [[flat modality]] $\dashv$ [[sharp modality]] $\int \dashv \flat \dashv \sharp$, which may be thought of as expressing ``continuum'' and ``quantity'' in the sense of [[Georg Hegel]]`s \emph{[[Science of Logic]]} (as explained in detail there.) The existence of such an [[adjoint quadruple]] of adjoint $(\infty,1)$-functors alone implies a rich [[internalization|internal]] [[higher geometry]] in $\mathbf{H}$ that comes with its internal notion of [[Galois theory]], [[Lie theory]], [[differential cohomology]], [[Chern-Weil theory]]. Examples of cohesive $(\infty,1)$-toposes include \begin{itemize}% \item the $(\infty,1)$-topos $\mathbf{H} =$[[Disc∞Grpd]] of [[discrete ∞-groupoid]]s; \item the $(\infty,1)$-topos $\mathbf{H} =$ [[ETop∞Grpd]] of [[Euclidean-topological ∞-groupoids]]; \item the $(\infty,1)$-topos $\mathbf{H} =$ [[Smooth∞Grpd]] of [[smooth ∞-groupoids]]; \item the $(\infty,1)$-topos $\mathbf{H} =$ [[SynthDiff∞Grpd]] of [[formal smooth ∞-groupoids]]; \item the $(\infty,1)$-topos $\mathbf{H} =$ [[Super∞Grpd]] of [[super ∞-groupoids]]; \item the $(\infty,1)$-topos $\mathbf{H} =$ [[SmoothSuper∞Grpd]] of [[smooth super ∞-groupoids]]. \end{itemize} In [[ETop∞Grpd]] and those contexts containing it, the internal notions of [[geometric realization]], [[geometric homotopy groups in an (infinity,1)-topos|geometric homotopy]] and [[Galois theory]] subsume the usual ones (over well-behaved topological spaces). In [[Smooth∞Grpd]] also the notions of [[Lie theory]], [[differential cohomology]] and [[Chern-Weil theory]] subsume the usual ones. In [[SynthDiff∞Grpd]] the internal notion of [[Lie algebra]] and [[Lie algebroid]] subsumes the traditional one --- and generalizes them to higher smooth geometry. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We state the definition in several equivalent ways. \begin{enumerate}% \item \hyperlink{ExternalDefinition}{externally} in the ambient context; \item \hyperlink{InternalDefinition}{internally} to the cohesive $(\infty,1)$-topos itselfs; \item internally and \hyperlink{DefinitionInHomotopyTypeTheory}{formulated in homotopy type theory} \end{enumerate} \hypertarget{ExternalDefinition}{}\subsubsection*{{Externally}}\label{ExternalDefinition} The definition is the immediate analog of the definition of a [[cohesive topos]]. \begin{defn} \label{CohesiveInfinTopos}\hypertarget{CohesiveInfinTopos}{} An [[(∞,1)-topos]] $\mathbf{H}$ is \textbf{cohesive} if \begin{enumerate}% \item it is a [[strongly ∞-connected (∞,1)-topos]]; \item it is a [[local (∞,1)-topos]]. \end{enumerate} \end{defn} \begin{remark} \label{}\hypertarget{}{} As always in [[topos theory]] and [[higher topos theory]], such definitions can be made sense of over any \emph{base} . Here: over any [[base (∞,1)-topos]]. Over the canonical base [[∞Grpd]] of [[∞-groupoid]]s, the definition of a cohesive $(\infty,1)$-topos is equivalently the following: the [[global section]] [[(∞,1)-geometric morphism]] $\Gamma : \mathbf{H} \to \infty Grpd$ lifts to an [[adjoint quadruple]] of [[adjoint (∞,1)-functor]]s \begin{displaymath} (\Pi \dashv Disc \dashv \Gamma \dashv coDisc) : \mathbf{H} \stackrel{\stackrel{\overset{\Pi}{\longrightarrow}}{\overset{Disc}{\leftarrow}}}{\stackrel{\underset{\Gamma}{\longrightarrow}}{\underset{coDisc}{\leftarrow}}} \infty Grpd \; \end{displaymath} where $\Pi$ preserves [[finite limit|finite]] [[(∞,1)-product]]s. Often we will tacitly assume to work over [[∞Grpd]]. But most statements and constructions have straightforward generalizations to arbitrary bases. In particular, below in the \hyperlink{InternalDefinition}{internal definition} of cohesion, it takes more to fix the base topos than to leave it arbitrary. Every [[adjoint quadruple]] induces an [[adjoint triple]] of endofunctors. \begin{displaymath} ( \mathbf{\Pi} \dashv \mathbf{\flat} \dashv \mathbf{#} ) : \mathbf{H} \stackrel{\overset{\Pi}{\longrightarrow}}{\stackrel{\overset{\Disc}{\leftarrow}}{\underset{\Gamma}{\longrightarrow}}} \infty Grpd \stackrel{\overset{Disc}{\longrightarrow}}{\stackrel{\overset{\Gamma}{\leftarrow}}{\underset{coDisc}{\longrightarrow}}} \mathbf{H} \,. \end{displaymath} Here ``$\mathbf{\flat}$'' is meant to be pronounced ``flat''. The interpretation of these three functors is discussed in detail at \emph{[[cohesive (∞,1)-topos -- structures]]}. \end{remark} Sometimes it is desireable to add further axioms, such as the following. \begin{defn} \label{PiecesHavePoints}\hypertarget{PiecesHavePoints}{} We say that \textbf{pieces have points} for an object $X$ in a cohesive $(\infty,1)$-topos $\mathbf{H}$ if the [[points-to-pieces transform]] \begin{displaymath} \Gamma X \to \Gamma Disc \Pi X \simeq \Pi X \end{displaymath} is an [[effective epimorphism in an (∞,1)-category]], equivalently (as discussed there) such that this is an [[epimorphism]] on [[connected]] components. \end{defn} Here the first morphismism is the image under $\Gamma$ of the $(Disc \dashv \Gamma)$-[[unit of an adjunction|unit]] and the second is an inverse of the $(\Pi \dashv Disc)$-counit (which is invertible because $Disc$ is [[full and faithful (∞,1)-functor|full and faithful]] in a [[local (∞,1)-topos]].) \begin{defn} \label{DiscreteObjectsAreConcrete}\hypertarget{DiscreteObjectsAreConcrete}{} We say \textbf{discrete objects are concrete} in $\mathbf{H}$ if for all $S \in$[[∞Grpd]] the morphism \begin{displaymath} Disc S \to coDisc \Gamma Disc S \stackrel{\simeq}{\longrightarrow} coDisc S \end{displaymath} induces [[monomorphism]]s on all [[categorical homotopy groups in an (infinity,1)-topos|homotopy sheaves]]. \end{defn} The following extra condition ensures that the [[shape modality]] is explicitly given by a geometric [[path ∞-groupoid]] construction. \begin{defn} \label{A1ExhibitingCohesion}\hypertarget{A1ExhibitingCohesion}{} Given a cohesive $\infty$-topos $\mathbf{H}$ and an object $\mathbb{A}^1 \in \mathbf{H}$, we say that $\mathbb{A}^1$ \emph{exhibits the cohesion} if the [[shape modality]] $\Pi$ is equivalent to ``[[A1-homotopy theory|A1-localization]]'' $L_{\mathbb{A}^1}$, hence to [[localization of an (∞,1)-category|localization]] of $\mathbf{H}$ at the class of [[projection]] morphisms of the form $(-)\times \mathbb{A}^1 \longrightarrow (-)$, i.e. if \begin{displaymath} \Pi \simeq L_{\mathbb{A}^1} \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} In the example of [[smooth ∞-groupoid|smooth cohesion]] and its variants such as [[Euclidean topological infinity-groupoid|Euclidean topological cohesion]], the standard [[real line]] $\mathbb{A}^1 = \mathbb{R}^1$ exhibits cohesion in the sense of def. \ref{A1ExhibitingCohesion} (by \href{cohesive+%28infinity%2C1%29-topos+--+structures#RealLineIsTheContinuum}{this discussion}). Therefore one might also say that if an object $\mathbb{A}^1$ in a cohesive $\infty$-topos exhibits the cohesion, then it plays the role of \emph{the [[continuum]]} in analogy of the traditional use of this term in geometry. See also at \emph{\href{continuum#InCohesiveHomotopyTypeTheory}{continuum -- In cohesive homotopy theory}}. \end{remark} Another extra axiom is (see at \emph{[[Aufhebung]]} for more): \begin{defn} \label{AufhebungOfBecoming}\hypertarget{AufhebungOfBecoming}{} Say that a cohesive $\infty$-topos, def. \ref{CohesiveInfinTopos}, has \emph{[[Aufhebung]] of [[becoming]]} if the [[sharp modality]] preserves the [[initial object]] \begin{displaymath} \sharp \emptyset \simeq \emptyset \,. \end{displaymath} \end{defn} \hypertarget{InternalDefinition}{}\subsubsection*{{Internally}}\label{InternalDefinition} We reformulate the \hyperlink{ExternalDefinition}{above axioms} for a cohesive $(\infty,1)$-topos without references to functors \emph{on} it, and instead entirely in terms of structures \emph{in} it. \begin{lemma} \label{ReflectiveEmbeddingInternally}\hypertarget{ReflectiveEmbeddingInternally}{} A [[full sub-(∞,1)-category]] $\mathbf{B} \hookrightarrow \mathbf{H}$ is \begin{itemize}% \item [[reflective sub-(∞,1)-category|reflectively embedded]] precisely if for every [[object]] $X \in \mathbf{H}$ there is a [[morphism]] \begin{displaymath} loc_X : X \to L X \end{displaymath} (the [[unit of an adjunction|unit]]) with $L X \in \mathbf{B} \hookrightarrow \mathbf{H}$, such that for all $Y \in \mathbf{B} \hookrightarrow \mathbf{H}$ the value of the [[(∞,1)-categorical hom-space]]-functor \begin{displaymath} \mathbf{H}(loc_X, Y) : \mathbf{H}(L X, Y) \stackrel{\simeq}{\longrightarrow} \mathbf{H}(X, Y) \end{displaymath} is an [[equivalence in an (∞,1)-category|equivalence]] (of [[∞-groupoid]]s). \item coreflectively embedded precisely if for every [[object]] $Y \in \mathbf{H}$ there is a [[morphism]] \begin{displaymath} coloc_Y : R Y \to Y \end{displaymath} (the [[unit of an adjunction|counit]]) with $R Y \in \mathbf{B} \hookrightarrow \mathbf{H}$ such that for all $X \in \mathbf{B} \hookrightarrow \mathbf{H}$ the value of the [[(∞,1)-categorical hom-space]]-functor \begin{displaymath} \mathbf{H}(X, coloc_Y) : \mathbf{H}(X, R Y) \stackrel{\simeq}{\to} \mathbf{H}(X, Y) \end{displaymath} is an [[equivalence in an (∞,1)-category|equivalence]] (of [[∞-groupoid]]s). \end{itemize} \end{lemma} This is proven \href{http://ncatlab.org/nlab/show/reflective+sub-%28infinity,1%29-category#CharacterizationOfReflectors}{here}. \begin{lemma} \label{}\hypertarget{}{} A reflective embedding \begin{displaymath} coDisc : \mathbf{B}_{cod} \stackrel{\overset{\tilde \Gamma}{\leftarrow}}{\underset{coDisc}{\hookrightarrow}} \mathbf{H} \end{displaymath} and a coreflective embedding \begin{displaymath} Disc : \mathbf{B}_{disc} \stackrel{\overset{Disc}{\hookrightarrow}}{\underset{\Gamma}{\leftarrow}} \mathbf{H} \end{displaymath} fit into a single [[adjoint triple]] \begin{displaymath} \mathbf{H} \stackrel{ \overset{Disc}{\hookleftarrow} }{ \stackrel{ \overset{\Gamma}{\to} }{ \underset{coDisc}{\hookleftarrow} } } \mathbf{B} \end{displaymath} (hence there is an equivalence $\mathbf{B}_{disc} \simeq \mathbf{B}_{cod}$ that moreover makes the coreflector $\tilde\Gamma$ of $Disc$ coincide with the reflector $\Gamma$ of $coDisc$) precisely if for the [[unit of an adjunction|unit]] and counit given by lemma \ref{ReflectiveEmbeddingInternally} we have that the morphisms on the left of \begin{equation} coDisc \tilde \Gamma (Disc \Gamma X \to X) \; =: \; (coDisc \tilde \Gamma Disc \Gamma X \stackrel{\simeq}{\to} coDisc \tilde \Gamma X) \label{FirstNaturalEquivalence}\end{equation} \begin{equation} Disc \Gamma (X \to coDisc \tilde \Gamma X) \;\; =: \;\; ( Disc \Gamma X \stackrel{\simeq}{\to} Disc \Gamma coDisc \tilde \Gamma ) \label{SecondNaturalEquivalence}\end{equation} are (natural) [[equivalence in an (∞,1)-category|equivalences]] for all objects $X \in \mathbf{H}$, as indicated on the right. \end{lemma} \begin{proof} It is clear that if we have an [[adjoint triple]], then \eqref{FirstNaturalEquivalence} and \eqref{SecondNaturalEquivalence} are implied. We discuss now the converse. First notice that the two embeddings always combine into an adjunction of the form \begin{displaymath} \mathbf{B}_{disc} \stackrel{\overset{Disc}{\hookrightarrow}}{\underset{\Gamma}{\leftarrow}} \mathbf{H} \stackrel{\overset{\tilde \Gamma}{\to}}{\underset{coDisc}{\hookleftarrow}} \mathbf{B}_{cod} \,. \end{displaymath} The natural equivalence \eqref{FirstNaturalEquivalence} applied to a codiscrete object $X := coDisc A$ gives that $coDisc$ of the counit of this composite adjunction is an equivalence \begin{displaymath} coDisc \tilde \Gamma Disc \Gamma coDisc A \stackrel{\simeq}{\to} coDisc \tilde \Gamma coDisc A \stackrel{\simeq}{\to} coDisc A \end{displaymath} for all $A$, and since $coDisc$ is [[full and faithful (infinity,1)-functor|full and faithful]], so is the composite counit \begin{displaymath} \tilde \Gamma Disc \Gamma coDisc A \stackrel{\simeq}{\to} \tilde \Gamma coDisc A \stackrel{\simeq}{\to} A \end{displaymath} itself. Analogously, \eqref{SecondNaturalEquivalence} implies that the unit of the composite adjunction is an equivalence. Therefore \eqref{FirstNaturalEquivalence} and \eqref{SecondNaturalEquivalence} together imply that the adjunction itself exhibits an [[equivalence of (∞,1)-categories|equivalence]] $\mathbf{B}_{disc} \simeq \mathbf{B}_{cod}$. Using this we then find for each $X \in \mathbf{H}$ a composite natural equivalence \begin{displaymath} Disc \tilde \Gamma X \stackrel{\simeq}{\to} Disc \Gamma coDisc \tilde \Gamma X \stackrel{\simeq}{\to} Disc \Gamma X \end{displaymath} where the first morphism uses the above equivalence on the codiscrete object $\tilde \Gamma X$ and the second is a choice of natural inverse of \eqref{SecondNaturalEquivalence}. Since $Disc$ is full and faithful, this mean that we have equivalences \begin{displaymath} \tilde \Gamma X \simeq \Gamma X \end{displaymath} natural in $X$, hence that $\tilde \Gamma \simeq \Gamma$. \end{proof} \begin{remark} \label{AdjunctionIsoFromInternalReflectionCoreflection}\hypertarget{AdjunctionIsoFromInternalReflectionCoreflection}{} In the above situation, the defining [[adjoint (∞,1)-functor|adjunction equivalence]] \begin{displaymath} \mathbf{H}(\mathbf{\Pi} X , A) \simeq \mathbf{H}(X, \flat A) \end{displaymath} exhibiting $(\mathbf{\Pi} \dashv \flat)$ is given by the composite of natural equivalences \begin{displaymath} \mathbf{H}(\mathbf{\Pi}X, A) \underoverset{\simeq}{\mathbf{H}(\mathbf{\Pi}X, coloc_A)^{-1}}{\to} \mathbf{H}(\mathbf{\Pi} X, \flat A) \underoverset{\simeq}{\mathbf{H}(loc_X, \flat A)}{\to} \mathbf{H}(X, \flat A) \end{displaymath} from lemma \ref{ReflectiveEmbeddingInternally}, using that both $\mathbf{\Pi} X$ as well as $\flat A$ are discrete. \end{remark} Using these lemmas we can now restate cohesiveness internally. \begin{corollary} \label{}\hypertarget{}{} For $Disc : \mathbf{B} \hookrightarrow \mathbf{H}$ a [[sub-(∞,1)-category]], the inclusion extends to an [[adjoint quadruple]] of the form \begin{displaymath} \mathbf{H} \stackrel{\overset{\Pi}{\to}}{\stackrel{\overset{Disc}{\hookleftarrow}}{\stackrel{\overset{\Gamma}{\to}}{\underset{coDisc}{\hookleftarrow}}}} \mathbf{B} \end{displaymath} precisely if there exists for each object $X \in \mathbf{H}$ \begin{enumerate}% \item a morphism $X \to \mathbf{\Pi}(X)$ with $\mathbf{\Pi}(X) \in \mathbf{B} \stackrel{Disc}{\hookrightarrow} \mathbf{H}$; \item a morphism $\mathbf{\flat} X \to X$ with $\mathbf{\flat} X \in \mathbf{B} \stackrel{Disc}{\hookrightarrow} \mathbf{H}$; \item a morphism $X \to #X$ with $# X \in \mathbf{B} \stackrel{coDisc}{\hookrightarrow} \mathbf{H}$ \end{enumerate} such that for all $Y \in \mathbf{B} \stackrel{Disc}{\hookrightarrow} \mathbf{H}$ and $\tilde Y \in \mathbf{B} \stackrel{coDisc}{\hookrightarrow} \mathbf{H}$ the induced morphisms \begin{enumerate}% \item $\mathbf{H}(\mathbf{\Pi}X , Y) \stackrel{\simeq}{\to} \mathbf{H}(X,Y)$; \item $\mathbf{H}(Y, \mathbf{\flat}X) \stackrel{\simeq}{\to} \mathbf{H}(Y,X)$; \item $\mathbf{H}(# X , \tilde Y) \stackrel{\simeq}{\to} \mathbf{H}(X,\tilde Y)$; \item $# (\flat X \to X)$; \item $\flat (X \to # X)$ \end{enumerate} are [[equivalence in an (infinity,1)-category|equivalences]] (the first three of [[∞-groupoids]] the last two in $\mathbf{H}$). Moreover, if $\mathbf{H}$ is a [[cartesian closed category]], then $\Pi$ preserves finite products precisely if the $Disc$-inclusion is an [[exponential ideal]]. \end{corollary} The last statement follows from the $(\infty,1)$-category analog of the discussion \href{http://ncatlab.org/nlab/show/reflective+subcategory#ReflectiveSubcategoriesOfCartesianClosedCategotries}{here}. \hypertarget{DefinitionInHomotopyTypeTheory}{}\subsubsection*{{In homotopy type theory}}\label{DefinitionInHomotopyTypeTheory} The axioms for cohesion, in the \hyperlink{InternalDefinition}{internal version}, can be formulated in [[homotopy type theory]], the [[internal language of an (∞,1)-topos]]. The corresponging [[Coq]]-[[HoTT]] code is in (\hyperlink{Shulman}{Shulman}). For more see \emph{[[cohesive homotopy type theory]]}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} We discuss basic properties implied by the axioms for cohesive $(\infty,1)$-toposes in \begin{itemize}% \item \hyperlink{AsAPointLikeSpace}{As a point-like space}; \item \hyperlink{General}{General}. \item \hyperlink{OverArbitraryBases}{Over arbitrary bases} \end{itemize} Then we discuss presentations over special [[site]]s in \begin{itemize}% \item \hyperlink{OverAnInfinityCohesiveSite}{Over an ∞-cohesive site}. \end{itemize} \hypertarget{AsAPointLikeSpace}{}\subsubsection*{{As a point-like space}}\label{AsAPointLikeSpace} \begin{prop} \label{PointLike}\hypertarget{PointLike}{} A nontrivial cohesive $(\infty,1)$-topos \begin{enumerate}% \item has the [[shape of an (∞,1)-topos|shape]] of the point; \item has [[homotopy dimension]] 0; \item has [[cohomology dimension]] 0. \end{enumerate} \end{prop} \begin{proof} The first holds for every [[∞-connected (∞,1)-topos]], see there. The second holds for every [[local (∞,1)-topos]], see there. The third follows from the second, see [[homotopy dimension]]. \end{proof} \begin{remark} \label{ThickenedPoint}\hypertarget{ThickenedPoint}{} This says that a cohesive $(\infty,1)$-topos $\mathbf{H}$ is, when itself regarded as a [[little topos]], a generalized [[space]], a \emph{thickened point} . We may think of it as the standard [[point]] equipped with a \emph{cohesive neighbourhood} . In this sense every space $X$ \emph{modeled on} the cohesive structure defined by $\mathbf{H}$ is an [[étale space]] over $X$: its [[petit topos|petit]] $(\infty,1)$-topos $\mathbf{H}/X$ sits by a [[locally homeomorphic geometric morphism]] over $\mathbf{H}$ \begin{displaymath} \mathbf{H}/X \stackrel{local\;homeo}{\to} \mathbf{H} \,. \end{displaymath} \end{remark} \hypertarget{OverAnInfinityCohesiveSite}{}\subsubsection*{{Over an $\infty$-cohesive site}}\label{OverAnInfinityCohesiveSite} We discuss a [[presentable (∞,1)-category|presentation]] of classes of cohesive [[(∞,1)-topos]]es by a [[model structure on simplicial presheaves]] over a suitable [[site]]. \begin{prop} \label{SimplicialPresheavesOverInfinityCohesviveSite}\hypertarget{SimplicialPresheavesOverInfinityCohesviveSite}{} For $C$ an [[∞-cohesive site]] the [[(∞,1)-category of (∞,1)-sheaves]] $(\infty,1)Sh(C)$ over $C$ is a cohesive $(\infty,1)$-topos satisfying the two axioms \emph{\hyperlink{PiecesHavePoints}{pieces have points}} and \emph{\hyperlink{DiscreteObjectsAreConcrete}{discrete objects are concrete}} . \end{prop} The detailed discussion is at [[∞-cohesive site]]. \hypertarget{General}{}\subsubsection*{{General}}\label{General} \begin{prop} \label{HypercompleteProperty}\hypertarget{HypercompleteProperty}{} Every cohesive $(\infty,1)$-topos over [[∞Grpd]] is a [[hypercomplete (∞,1)-topos]]. \end{prop} \begin{proof} By the \hyperlink{PointLike}{above proposition} it has finite [[homotopy dimension]]. This implies hypercompeteness. See there. \end{proof} \begin{prop} \label{Cohesive1Topos}\hypertarget{Cohesive1Topos}{} For $\mathbf{H}$ a cohesive $(\infty,1)$-topos, the [[(n,1)-topos|(1,1)-topos]] $\tau_{\leq 1-1} \mathbf{H}$ of 0-[[truncated]] objects is a [[cohesive topos]]. \end{prop} \begin{prop} \label{PiPreservesPullbacksOverDiscretes}\hypertarget{PiPreservesPullbacksOverDiscretes}{} For a cohesive $(\infty,1)$-topos $(\Pi \dashv Disc \dashv \Gamma \dashv coDisc) : \mathbf{H} \to \infty Grpd$ over an [[∞-cohesive site]], the functor $\Pi$ preserves [[(∞,1)-pullbacks]] over [[discrete objects]]. \end{prop} We first consider a lemma. Notice that for $A \in \infty Grpd$ the [[(∞,1)-Grothendieck construction]] gives an [[equivalence of (∞,1)-categories]] \begin{displaymath} \infty Grpd_{/A} \simeq Func(A, \infty Grpd) \end{displaymath} from the [[over (∞,1)-category]] of $\infty Grpd$ over $A$ to the [[(∞,1)-functor (∞,1)-category]] from $A$ to $\infty Grpd$. \begin{lemma} \label{GrothendieckConstrInCohesivefinityTopos}\hypertarget{GrothendieckConstrInCohesivefinityTopos}{} For $\mathbf{H}$ a cohesive $(\infty,1)$-topos over an [[∞-cohesive site]] and for $A \in \infty Grpd$, we have an [[equivalence of (∞,1)-categories]] \begin{displaymath} \mathbf{H}_{/ Disc A} \simeq Func(A, \mathbf{H}) \,. \end{displaymath} \end{lemma} \begin{proof} We establish this via a [[presentable (infinity,1)-category|presentation]] of $\mathbf{H}$ by a [[model structure on simplicial presheaves]]. Let $C$ be an [[∞-cohesive site]] of definition for $\mathbf{H}$. Then by the discussion there we have \begin{displaymath} \mathbf{H} \simeq ([C^{op}, sSet]_{proj,loc})^\circ \,. \end{displaymath} Moreover, picking a [[Kan complex]] presentation for $A$, which we shall denote by the same symbol, we have that the constant simplicial presheaf $const A \in [C^{op}, sSet]_{proj, loc}$ is fibrant. Therefore by \href{http://ncatlab.org/nlab/show/model+structure+on+an+over+category#PresentationOfSliceInfinityCat}{this proposition} the induced [[model structure on an overcategory]] on $[C^{op}, sSet]/const A$ presents the given [[over (∞,1)-category]] \begin{displaymath} \mathbf{H}_{/ Disc A} \simeq \left( \left([C^{op}, sSet]/const A\right)_{(proj,loc)/const A} \right)^\circ \,. \end{displaymath} Now observe that we have an ordinary [[equivalence of categories]] \begin{displaymath} [C^{op}, sSet]/const A \simeq [C^op, sSet/A] \end{displaymath} under which the model structure becomes that of the local projective [[model structure on functors]] with values in the model structure $(sSet/A)_{Quillen/A}$ that presents $\infty Grpd_{/ A}$. Let then $sSet^+/A$ denote the [[model structure for left fibrations]]. By the discussion there, this also presents $\infty Grpd_{/ A}$. Hence by \href{http://ncatlab.org/nlab/show/model+structure+on+functors#PresentationOfInfinityFunctors}{this proposition} we have an [[equivalence of (∞,1)-categories]] \begin{displaymath} \begin{aligned} \mathbf{H}_{Disc A} & \simeq \left( [C^{op}, sSet/A]_{proj,loc} \right)^\circ \\ & \simeq \left( [C^{op}, sSet^+/A]_{proj,loc} \right)^\circ \end{aligned} \,. \end{displaymath} This allows now to apply \href{http://ncatlab.org/nlab/show/model%20structure%20for%20left%20fibrations#GrothendieckConstruction}{this presentation} of the [[(∞,1)-Grothendieck construction]] to find \begin{displaymath} \cdots \simeq \left( [C^{op}, [w(A), sSet_{Quillen}]_{proj}]_{proj,loc} \right)^\circ \,, \end{displaymath} where $w(A)$ is the [[simplicially enriched category]] corresponding to $A$ (as discussed at \emph{[[relation between quasi-categories and simplicial categories]]} ) and $[w(A), sSet_{Quillen}]_{proj}$ is the global [[model structure on sSet-enriched presheaves]]. Then using the [[cartesian closed category|cartesian closure]] of the category of simplicial presheaves (which is a [[topos]]) inside the $(-)^\circ$ we have \begin{displaymath} \cdots \simeq \left( [w(A), [C^{op}, sSet_{Quillen}]_{proj,loc}]_{proj} \right)^\circ \,. \end{displaymath} Finally this implies the claim using \href{http://ncatlab.org/nlab/show/%28infinity%2C1%29-category+of+%28infinity%2C1%29-functors#PresentationByModelStructuresOnFunctors}{this proposition}. \end{proof} With this lemma we can now give the proof of prop. \ref{PiPreservesPullbacksOverDiscretes}. \begin{proof} By the discussion at \href{http://ncatlab.org/nlab/show/adjoint+%28infinity,1%29-functor#OnSlices}{adjoint (∞,1)-functors on slices} we have that $(\Pi \dashv Disc)$ induces an adjoint pair \begin{displaymath} (\Pi/Disc A \dashv Disc / Disc A) : \mathbf{H}_{Disc A} \to \infty Grpd_{/A} \,. \end{displaymath} Under the equivalence from lemma \ref{GrothendieckConstrInCohesivefinityTopos} the functor $\Pi/Disc A$ maps to \begin{displaymath} Func(A, \Pi) : Func(A, \mathbf{H}) \to Func(A, \infty Grpd) \,. \end{displaymath} Since [[products]] of $(\infty,1)$-functor $(\infty,1)$-categories are computed objectwise, and since $\Pi$ preserves finite products by the axioms of cohesion, also $Func(A, \Pi)$ preserves finite products, and hence so does $\Pi/Disc A$. But products in the slice over $Disc A$ are [[(∞,1)-pullbacks]] over $Disc A$. So this proves the claim. \end{proof} \hypertarget{OverArbitraryBases}{}\subsubsection*{{Base of discrete and codiscrete objects}}\label{OverArbitraryBases} In the \hyperlink{InternalDefinition}{internal definition} the base of discrete/codiscrete objects is not explicitly axiomatized to be an [[(∞,1)-topos]] itself (the [[base (∞,1)-topos]]), but this is implied by the axioms. We deduce that and related properties in stages. In the following, let $\mathbf{H}$ be an [[(∞,1)-topos]] equipped with an [[adjoint quadruple]] of functors to an [[(∞,1)-category]] $\mathbf{B}$ -- the \emph{base of cohesion}, where $Disc$ and $coDisc$ are full and faithful. \begin{prop} \label{LimitsInBase}\hypertarget{LimitsInBase}{} The base $\mathbf{B}$ of cohesion has all [[(∞,1)-limits]] and [[(∞,1)-colimits]]. \end{prop} \begin{proof} This is a general property of a reflectively and coreflectively embedded subcategory. The limits are computed by computing them in $\mathbf{H}$ and then applying $\Gamma$ and the colimits are computed by computing them in $\mathbf{H}$ and then applying $\Pi$. For $X : I \to \mathbf{B}$ any [[diagram]] we have \begin{displaymath} \begin{aligned} \Gamma \lim_{\leftarrow_i} Disc X_i & \simeq \lim_{\leftarrow_i} \Gamma Disc X_i \\ & \simeq \lim_{\leftarrow_i} X_i \end{aligned} \end{displaymath} \begin{displaymath} \begin{aligned} \Pi \lim_{\to_i} Disc X_i & \simeq \lim_{\leftarrow_i} \Pi Disc X_i \\ & \simeq \lim_{\leftarrow_i} X_i \end{aligned} \,. \end{displaymath} \end{proof} \begin{remark} \label{}\hypertarget{}{} Since $Disc$, being both a [[left adjoint]] as well as a [[right adjoint]] preserves limits and colimits, it follows that a (co)limit of discrete objects computed in $\mathbf{H}$ is itself again discrete and is the image under $Disc$ of the coresponding (co)limit computed in $\mathbf{B}$. \end{remark} \begin{example} \label{}\hypertarget{}{} Since [[loop space objects]] are [[(∞,1)-limits]] it follows that the loop space object of any discrete object is itself again a discrete object. \end{example} We have also the following stronger statement. \begin{prop} \label{}\hypertarget{}{} The base of cohesion $\mathbf{B}$ is a [[presentable (∞,1)-category]] and in fact an [[(∞,1)-topos]] itself. \end{prop} \begin{proof} By one of the equivalent characterizations of [[presentable (∞,1)-categories]] these are [[reflective sub-(∞,1)-categories]] of [[(∞,1)-categories of (∞,1)-presheaves]] where the embedding is by an [[accessible (∞,1)-functor]]. Since $\mathbf{H}$ is itself accessibly and reflectively embedded into the presheaves $PSh(C)$ on a [[(∞,1)-site]] of definition, we have a composite reflective inclusions \begin{displaymath} \mathbf{B} \stackrel{Disc}{\hookrightarrow} \mathbf{H} \hookrightarrow PSh(C) \,. \end{displaymath} Since $Disc$ even preserves all [[(∞,1)-colimits]], it is in particular an [[accessible (∞,1)-functor]], hence so is the above composite. Finally, since $\Gamma$ preserves all [[(∞,1)-limits]], hence in particular the [[finite limits]], $(\Gamma, coDisc)$ is a [[geometric embedding]] that exhibits an sub-[[(∞,1)-topos]]. \end{proof} Notice that the reflection $(\Pi \dashv Disc)$ does not in general constitute a [[geometric embedding]], since $\Pi$ is only required to preserve finite products (and in interesting examples rarely preserves more limits than that). The following statement and its proof about [[cohesive topos|cohesive 1-toposes]] should hold verbatim also for cohesive $(\infty,1)$-toposes. \begin{prop} \label{}\hypertarget{}{} The [[reflective subcategories]] of discrete objects and of codiscrete objects are both [[exponential ideals]]. \end{prop} \begin{proof} By the discussion at [[exponential ideal]] a reflective subcategories of a [[cartesian closed category]] is an exponential ideal precisely if the [[reflector]] preserves [[products]]. For the codiscrete objects the reflector $\Gamma$ preserves even all [[limits]] and for the discrete objects the reflector $\Pi$ does so by assumotion of strong connectedness. \end{proof} \hypertarget{FactorizationSystemsForPi}{}\subsubsection*{{Factorization systems associated to $\mathbf{\Pi}$}}\label{FactorizationSystemsForPi} We discuss [[orthogonal factorization system in an (infinity,1)-category|orthogonal factorization systems]] in a cohesive $(\infty,1)$-topos that characterize or are characterized by the [[reflective sub-(infinity,1)-category|reflective subcategory]] of dicrete objects, with reflector $\mathbf{\Pi} : \mathbf{H} \stackrel{\Pi}{\to} \infty Grpd \stackrel{Disc}{\hookrightarrow} \mathbf{H}$. \begin{defn} \label{PiClosure}\hypertarget{PiClosure}{} For $f : X \to Y$ a morphism in $\mathbf{H}$, write $c_{\mathbf{\Pi}} f \to Y$ for the [[(∞,1)-pullback]] in \begin{displaymath} \itexarray{ c_{\mathbf{\Pi}} f &\to & \mathbf{\Pi} X \\ \downarrow && \downarrow^{\mathrlap{\mathbf{\Pi} f}} \\ Y &\to& \mathbf{\Pi} Y } \,, \end{displaymath} where the bottom morphism is the $(\Pi \dashv Disc)$-[[unit of an adjunction|unit]]. We say that $c_{\mathbf{\Pi}} f$ is the \textbf{$\mathbf{\Pi}$-closure} of $f$, and that $f$ is \textbf{$\mathbf{\Pi}$[[Pi-closed morphism|-closed]]} if $X \simeq c_{\mathbf{\Pi}} f$. \end{defn} \begin{prop} \label{FactorizationPiEquivalencePiClosed}\hypertarget{FactorizationPiEquivalencePiClosed}{} If $\mathbf{H}$ has an [[∞-cohesive site]] of definition, then every morphism $f : X \to Y$ in $\mathbf{H}$ factors as \begin{displaymath} \itexarray{ X &&\stackrel{f}{\to}&& Y \\ & \searrow && \nearrow \\ && c_{\mathbf{\Pi}}f } \,, \end{displaymath} such that $X \to c_{\mathbf{\Pi}} f$ is a \emph{$\mathbf{\Pi}$-equivalence} in that it is inverted by $\mathbf{\Pi}$. \end{prop} \begin{proof} The factorization is given by the naturality of $\mathbf{\Pi}$ and the universal property of the $(\infty,1)$-pullback in def. \ref{PiClosure}. \begin{displaymath} \itexarray{ X &\to & c_{\mathbf{\Pi}} f &\to & \mathbf{\Pi} X \\ &{}_{\mathllap{f}}\searrow & \downarrow && \downarrow^{\mathrlap{\mathbf{\Pi} f}} \\ && Y &\to& \mathbf{\Pi} Y } \,. \end{displaymath} Then by prop. \ref{PiPreservesPullbacksOverDiscretes} the functor $\mathbf{\Pi}$ preserves the $(\infty,1)$-pullback over the discrete object $\mathbf{\Pi}Y$ and since $\mathbf{\Pi}(X \to \mathbf{\Pi}X)$ is an equivalence, it follows that $\mathbf{\Pi}(X \to c_{\mathbf{\Pi}f})$ is an equivalence. \end{proof} \begin{prop} \label{PiEquivalencePiClosedFactorizationSystem}\hypertarget{PiEquivalencePiClosedFactorizationSystem}{} The pair of classes \begin{displaymath} (\mathbf{\Pi}-equivalences, \mathbf{\Pi}-closed morphisms) \end{displaymath} is an [[orthogonal factorization system in an (infinity,1)-category|orthogonal factorization system]] in $\mathbf{H}$. \end{prop} \begin{proof} This follows by the general reasoning discussed at [[reflective factorization system]]: By prop. \ref{FactorizationPiEquivalencePiClosed} we have the required factorization. It remains to check the orthogonality. So let \begin{displaymath} \itexarray{ A &\to& X \\ \downarrow && \downarrow \\ B &\to& Y } \end{displaymath} be a square diagram in $\mathbf{H}$ where the left morphism is a $\mathbf{\Pi}$-equivalence and the right morphism is $\mathbf{\Pi}$-closed. Then by assumption there is a pullback square on the right in \begin{displaymath} \itexarray{ A &\to& X &\to& \mathbf{\Pi}X \\ \downarrow && \downarrow && \downarrow \\ B &\to& Y &\to& \mathbf{\Pi}Y \,. } \,. \end{displaymath} By naturality of the [[unit of an adjunction|adjunction unit]], the total rectangle is equivalent to \begin{displaymath} \itexarray{ A &\to& \mathbf{\Pi} A &\to & \mathbf{\Pi} Y \\ \downarrow && \downarrow^{\mathrlap{\simeq}} && \downarrow \\ B &\to& \mathbf{\Pi} B &\to& \mathbf{\Pi}X } \,. \end{displaymath} Here by assumption the middle morphism is an equivalence. Therefore there is an essentially unique lift in the square on the right and hence a lift in the total square. Again by the universality of the adjunction, any such lift factors through $\mathbf{\Pi} B$ and hence also this lift is essentially unique. Finally by universality of the pullback, this induces an essentially unique lift $\sigma$ in \begin{displaymath} \itexarray{ A &\to& X &\to& \mathbf{\Pi}X \\ \downarrow &{}^{\mathllap{\sigma}}\nearrow& \downarrow && \downarrow \\ B &\to& Y &\to& \mathbf{\Pi}Y \,. } \,. \end{displaymath} \end{proof} \begin{prop} \label{}\hypertarget{}{} For $f : X \to Y$ a $\mathbf{\Pi}$-closed morphism and $y : * \to Y$ a [[global element]], the [[homotopy fiber]] $X_y := y^* X$ is a discrete object. \end{prop} \begin{proof} By the def. \ref{PiClosure} and the [[pasting law]] we have that $y^* X$ is equivalently the $\infty$-pullback in \begin{displaymath} \itexarray{ y^* X &\to& &\to& \mathbf{\Pi} X \\ \downarrow && && \downarrow \\ * &\stackrel{y}{\to}& Y &\stackrel{}{\to}& \mathbf{\Pi}Y } \,. \end{displaymath} Since the [[terminal object in an (infinity,1)-category|terminal object]] is discrete, and since the [[right adjoint]] $Disc$ preserves $\infty$-pullbacks, this exhibits $y^* X$ as the image under $Disc$ of an $\infty$-pullback of $\infty$-groupoids. \end{proof} \hypertarget{Structures}{}\subsection*{{Structures in a cohesive $(\infty,1)$-topos}}\label{Structures} A cohesive $(\infty,1)$-topos is a general context for [[higher geometry]] with good [[cohomology]] and [[homotopy]] properties. We list fundamental structures and constructions that exist in every cohesvive $(\infty,1)$-topos. This section is at \begin{itemize}% \item [[cohesive (∞,1)-topos -- structures]] \end{itemize} \hypertarget{types_of_cohesion}{}\subsection*{{Types of cohesion}}\label{types_of_cohesion} \hypertarget{infinitesimal_cohesion}{}\subsubsection*{{Infinitesimal cohesion}}\label{infinitesimal_cohesion} \begin{itemize}% \item [[infinitesimal cohesion]] \end{itemize} \hypertarget{DifferentialCohesion}{}\subsubsection*{{Differential cohesion}}\label{DifferentialCohesion} We discuss [[extra structure]] on a cohesive $(\infty,1)$-topos that encodes a refinement of the corresponding notion of cohesion to \emph{infinitesimal cohesion} . More precisely, we consider inclusions $\mathbf{H} \hookrightarrow \mathbf{H}_{th}$ of cohesive $(\infty,1)$-toposes that exhibit the objects of $\mathbf{H}_{th}$ as infinitesimal cohesive neighbourhoods of objects in $\mathbf{H}$. This section is at \begin{itemize}% \item [[differential cohesive (∞,1)-topos]] \end{itemize} \hypertarget{locally_ringed_cohesion}{}\subsubsection*{{Locally ringed cohesion}}\label{locally_ringed_cohesion} Every cohesive $(\infty,1)$-topos $\mathbf{H}$ equipped with \hyperlink{DifferentialCohesion}{differential cohesion} comes canonically equipped with a notion of [[formally étale morphism]]s (as discussed there). Combined with the canonical interpretation of $\mathbf{H}$ as the [[classifying topos]] of a [[theory]] of [[local algebra|local T-algebra]]s, this canonically induces a notion of [[locally algebra-ed topos|locally algebra-ed (∞,1)-toposes]] with cohesive structure, generalizing the notion of [[locally ringed space]]s and [[locally ringed topos]]es. This section is at \begin{itemize}% \item [[cohesive (∞,1)-topos -- structure ∞-sheaves]]. \end{itemize} \hypertarget{Examples}{}\subsection*{{Examples of cohesive $\infty$-toposes}}\label{Examples} We list examples of cohesive $(\infty,1)$-toposes, both specific ones as well as classes of examples constructed in a certain way. \hypertarget{cohesive_diagram_toposes}{}\subsubsection*{{Cohesive diagram $(\infty,1)$-toposes}}\label{cohesive_diagram_toposes} \hypertarget{CohesiveDiagramToposes}{}\paragraph*{{Cohesive diagrams in a cohesive $(\infty,1)$-topos}}\label{CohesiveDiagramToposes} \begin{prop} \label{}\hypertarget{}{} Let $\mathbf{H}$ be an cohesive $(\infty,1)$-topos. Let $D$ be a [[small category]] ([[diagram]]) with [[initial object]] $\bottom$ and [[terminal object]] $\top$, or else a [[presentable (∞,1)-category]]. Write \begin{displaymath} (\bottom \dashv p \dashv \top) : D \stackrel{\overset{\bottom}{\hookleftarrow}}{\stackrel{\overset{p}{\to}}{\underset{\top}{\hookleftarrow}}} * \end{displaymath} for the [[adjoint triple|triple]] of [[adjoint (∞,1)-functors]] given by including $\bottom$ and $\top$. Then the [[(∞,1)-category of (∞,1)-functors|(∞,1)-functor category]] $\mathbf{H}^D$ is again a cohesive $(\infty,1)$-topos, exhibited by the [[adjoint quadruple]] which is the composite \begin{displaymath} \mathbf{H}^D \stackrel{\overset{\top^*}{\to}}{\stackrel{\overset{p^*}{\hookleftarrow}}{\stackrel{\overset{\bottom^*}{\to}}{\underset{\bottom_*}{\hookleftarrow}}}} \mathbf{H} \stackrel{\overset{\Pi}{\to}}{\stackrel{\overset{Disc}{\hookleftarrow}}{\stackrel{\overset{\Gamma}{\to}}{\underset{coDisc}{\hookleftarrow}}}} \infty Grpd \,, \end{displaymath} where the [[adjoint quadruple]] on the left is that induced under [[(∞,1)-Kan extension]] from $(\bottom \dashv p \dashv \top)$. \end{prop} \begin{proof} By the discussion at [[(∞,1)-Kan extension]] each of the original three functors induces adjoint triples $(\bottom_! \dashv \bottom^* \dashv \bottom_*)$ etc, as indicated. In particular $\top^*$ is a [[right adjoint] and therefore preserves finite products (and all small [[(∞,1)-limits]], even). By the original adjunctions one finds that $\bottom_! \simeq p^*$ and $p_! \simeq \top^*$, which implies the adjoint quadruple as indicated above by essential uniqueness of adjoints. Finally it is clear that $\top^* p^* \simeq Id$, which implies that $p^*$ is a [[full and faithful (∞,1)-functor]] (and hence so is $\bottom_*$). \end{proof} In particular we have \begin{cor} \label{}\hypertarget{}{} For $\mathbf{H}$ a cohesive $(\infty,1)$-topos, also its [[arrow category|arrow (∞,1)-category]] $\mathbf{H}^{\Delta[1]}$ is cohesive. \end{cor} \begin{example} \label{SierpinskiTopos}\hypertarget{SierpinskiTopos}{} For $\mathbf{H} =$ [[∞Grpd]] (``discrete cohesion'', see \hyperlink{DiscreteInfinityGroupoids}{below}) the corresponding cohesive $(\infty,1)$-topos $\infty Grpd^{\Delta[1]}$ is known as the \emph{[[Sierpinski (∞,1)-topos]]}. \end{example} \hypertarget{SimplicialObjctsInACohesiveTopos}{}\paragraph*{{Simplicial objects in a cohesive $(\infty,1)$-topos}}\label{SimplicialObjctsInACohesiveTopos} For $\mathbf{H}$ a cohesive $(\infty,1)$-topos its [[category of simplicial objects|(∞,1)-category of simplicial objects]] $\mathbf{H}^{\Delta^{op}}$ is cohesive over $\mathbf{H}$ \begin{displaymath} \mathbf{H}^{\Delta^{op}} \stackrel{\Pi_I}{\stackrel{\longrightarrow}{\stackrel{\overset{Disc_I}{\longleftarrow}}{\stackrel{\overset{\Gamma_I}{\longrightarrow}}{\underset{coDisc_I}{\longleftarrow}}}}} \mathbf{H} \,. \end{displaymath} Here \begin{itemize}% \item $\Pi_I$ sends a [[simplicial object]] to the [[homotopy colimit]] over its components, hence to its ``[[geometric realization]]'' as seen in $\mathbf{H}$. \item $\Gamma_I$ evaluates on the 0-simplex; \item $Disc_I$ sends an object in $\mathbf{H}$ to the simplicial object which is simplicially constant on $A$. \end{itemize} Hence cohesion of $\mathbf{H}^{\Delta^{op}}$ relative to $\mathbf{H}$ expresses the existence of a discrete and directed notion of path. The simplicial interval $\Delta^1 \in \mathbf{H}^{\Delta^{op}}$ (regarded under [[(∞,1)-Yoneda embedding]]) \emph{exhibits the cohesion} of $\mathbf{H}^{\Delta^{op}}$ over $\mathbf{H}$ in the sense of def. \ref{A1ExhibitingCohesion}, in that the relative [[shape modality]] $\Pi_I$ is equivalent to the ``[[A1-homotopy theory|A1-localization]]'' at $\mathbb{A}^1 = \Delta^1$ \begin{displaymath} \Pi_I \simeq L_{\Delta^1} \,. \end{displaymath} Notice that there is an inclusion \begin{displaymath} Grpd(\mathbf{H}) \hookrightarrow Cat(\mathbf{H}) \hookrightarrow \mathbf{H}^{\Delta^{op}} \end{displaymath} of the [[groupoid object in an (∞,1)-category|groupoid objects]] internal to $\mathbf{H}$ and of the [[category object in an (∞,1)-category|category objects]] internal to $\mathbf{H}$ inside $\mathbf{H}^{\Delta^{op}}$. Here $\mathbf{H}^{\Delta^{op}}$ is also the [[classifying topos]] for [[linear intervals]]. Its [[homotopy type theory]] [[internal language]] is equipped with an interval [[type]]. For more see at \emph{[[simplicial object in an (∞,1)-category]]}. \hypertarget{bundles_of_cohesive_spectra}{}\paragraph*{{Bundles of cohesive spectra}}\label{bundles_of_cohesive_spectra} The [[tangent (∞,1)-category]] $T\mathbf{H}$ to a cohesive $\infty$-topos is itself cohesive, (by the discussion at \emph{\href{tangent+%28infinity%2C1%29-category#TangentTopos}{tangent ∞-category -- Examples -- Of an ∞-topos}}), the \emph{[[tangent cohesive (∞,1)-topos]]}. This $T \mathbf{H}$ the $\infty$-topos of [[parameterized spectra]] in $\mathbf{H}$, hence is context for cohesive [[stable homotopy theory]]. \begin{displaymath} \itexarray{ Stab(\mathbf{H}) & \stackrel{\overset{L\Pi^{seq}}{\longrightarrow}}{\stackrel{\overset{Disc^{seq}}{\leftarrow}}{\stackrel{\overset{\Gamma^{seq}}{\longrightarrow}}{\underset{coDisc^{seq}}{\leftarrow}}}} & Stab(\infty Grpd) \\ \downarrow^{\mathrlap{incl}} && \downarrow^{\mathrlap{incl}} \\ T \mathbf{H} & \stackrel{\overset{L\Pi^{seq}}{\longrightarrow}}{\stackrel{\overset{Disc^{seq}}{\leftarrow}}{\stackrel{\overset{\Gamma^{seq}}{\longrightarrow}}{\underset{coDisc^{seq}}{\leftarrow}}}} & T \infty Grpd \\ {}^{\mathllap{base}}\downarrow {}^{\mathllap{0}}\uparrow \downarrow^{\mathrlap{base}} \uparrow^{\mathrlap{0}} && {}^{\mathllap{base}}\downarrow {}^{\mathllap{0}}\uparrow \downarrow^{\mathrlap{base}} \uparrow^{\mathrlap{0}} \\ \mathbf{H} & \stackrel{\overset{\Pi}{\longrightarrow}}{\stackrel{\overset{Disc}{\leftarrow}}{\stackrel{\overset{\Gamma}{\longrightarrow}}{\underset{coDisc}{\leftarrow}}}} & \infty Grpd } \,. \end{displaymath} \hypertarget{global_equivariant_homotopy_theory}{}\subsubsection*{{Global equivariant homotopy theory}}\label{global_equivariant_homotopy_theory} [[!include equivariant homotopy theory -- table]] \hypertarget{ExamplesFromCohesiveSitesOnfDefinition}{}\subsubsection*{{From $\infty$-Cohesive sites of definition}}\label{ExamplesFromCohesiveSitesOnfDefinition} \begin{prop} \label{}\hypertarget{}{} Examples of [[∞-cohesive site]]s are \begin{itemize}% \item any category with finite [[product]]s and equipped with the trivial [[coverage]]. \item the [[full subcategory]] $CartSp_{top} \subset$ [[Top]] on [[open ball]]s with the [[good open cover]] [[coverage]]; \item the site [[CartSp]] of [[Cartesian space]]s with [[smooth function]]s between them and [[good open cover]] [[coverage]]. \item the [[Cahiers topos]]-site [[ThCartSp]] of infinitesimally thickened Cartesian spaces. \end{itemize} \end{prop} From this one obtains the following list of examples of cohesive $(\infty,1)$-toposes. \hypertarget{DiscreteInfinityGroupoids}{}\paragraph*{{Discrete $\infty$-groupoids}}\label{DiscreteInfinityGroupoids} \begin{itemize}% \item [[discrete ∞-groupoid]] \end{itemize} \hypertarget{topological_groupoids}{}\paragraph*{{Topological $\infty$-groupoids}}\label{topological_groupoids} \begin{itemize}% \item [[Euclidean-topological ∞-groupoid]] \item [[locally contractible topological ∞-groupoid]] \end{itemize} \hypertarget{smooth_groupoids}{}\paragraph*{{Smooth $\infty$-groupoids}}\label{smooth_groupoids} \begin{itemize}% \item [[smooth ∞-groupoid]] \end{itemize} \hypertarget{complex_analytic_groupoids}{}\paragraph*{{Complex analytic $\infty$-groupoids}}\label{complex_analytic_groupoids} \begin{itemize}% \item [[complex analytic ∞-groupoid]] \end{itemize} \hypertarget{formal_smooth_groupoids}{}\paragraph*{{Formal smooth $\infty$-groupoids}}\label{formal_smooth_groupoids} \begin{itemize}% \item [[formal smooth ∞-groupoid]] \end{itemize} \hypertarget{smooth_super_groupoids}{}\paragraph*{{Smooth Super $\infty$-groupoids}}\label{smooth_super_groupoids} \begin{itemize}% \item [[super ∞-groupoid]] \item [[smooth super ∞-groupoid]] \item [[synthetic differential super ∞-groupoid]] \end{itemize} \hypertarget{smooth_groupoids_over_algebraic_stacks}{}\paragraph*{{Smooth $\infty$-groupoids over algebraic $\infty$-stacks}}\label{smooth_groupoids_over_algebraic_stacks} One can consider the [[tangent (∞,1)-topos]] of the [[cohesive (∞,1)-topos]] \begin{displaymath} Sh_\infty\left(SmthMfd, Sh_\infty\left(Sch_{\mathbb{Z}}\right)\right) \stackrel{\overset{\Pi}{\longrightarrow}}{\stackrel{\overset{Disc}{\leftarrow}}{\stackrel{\overset{\Gamma}{\longrightarrow}}{\underset{coDisc}{\leftarrow}}}} Sh_\infty(Sch_{\mathbb{Z}}) \end{displaymath} of [[∞-stacks]] on the [[site]] of [[smooth manifolds]] with values in turn in [[∞-stack]] over a [[site]] of [[arithmetic schemes]], hence by [[smooth ∞-groupoids]] but over a [[base (∞,1)-topos]] of algebraic [[∞-stacks]]. This leads to [[differential algebraic K-theory]]. See there for details. \hypertarget{arithmetic_groupoids}{}\subsubsection*{{$E_\infty$-Arithmetic $\infty$-groupoids}}\label{arithmetic_groupoids} see \emph{[[differential cohesion and idelic structure]]} [[!include arithmetic cohesion -- table]] \hypertarget{smooth_cohesion_over_arbitrary_base_toposes}{}\subsubsection*{{Smooth cohesion over arbitrary base $\infty$-toposes}}\label{smooth_cohesion_over_arbitrary_base_toposes} The above examples relativize to \hyperlink{OverArbitraryBases}{arbitrary bases}. For instance [[smooth infinity-groupoid|smooth cohesion]] over an [[(∞,1)-topos]] over a suitable [[site]] of [[schemes]] is the natural context for [[differential algebraic K-theory]]. See there for more. \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} As a context for geometric spaces and paths in geometric spaces, cohesive $(\infty,1)$-toposes are a natural context in which to formulate fundamental fundamental [[physics]]. See [[higher category theory and physics]] for more on this. See also \begin{itemize}% \item [[∞-Chern-Weil theory]] \item [[schreiber:∞-Chern-Simons theory]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[locally connected topos]] / [[locally ∞-connected (∞,1)-topos]] \begin{itemize}% \item [[connected topos]] / [[∞-connected (∞,1)-topos]] \item [[strongly connected topos]] / [[strongly ∞-connected (∞,1)-topos]] \item [[totally connected topos]] / [[totally ∞-connected (∞,1)-topos]] \end{itemize} \item [[local topos]] / [[local (∞,1)-topos]] \begin{itemize}% \item [[Pi modality]] $\dashv$ [[flat modality]] $\dashv$ [[sharp modality]] \end{itemize} \item [[cohesive topos]] / \textbf{cohesive (∞,1)-topos} \end{itemize} and \begin{itemize}% \item [[locally connected site]], [[locally ∞-connected site]] \item [[connected site]] \item [[local site]] \item [[cohesive site]], [[(∞,1)-cohesive site]] \end{itemize} \emph{unrelated} is the notion of \emph{[[cohesive ∞-prestack]]} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{precursors}{}\subsubsection*{{Precursors}}\label{precursors} The [[category theory|category-theoretic]] definition of [[cohesive topos]] was proposed by [[Bill Lawvere]]. See the references at \emph{[[cohesive topos]]}. The observation that the further left adjoint $\Pi$ in a [[locally ∞-connected (∞,1)-topos]] defines an intrinsic notion of paths and [[geometric homotopy groups in an (∞,1)-topos]] was suggested by [[Richard Williamson]]. The observation that the further right adjoint $coDisc$ in a [[local (∞,1)-topos]] serves to characterize [[concrete sheaf|concrete (∞,1)-sheaves]] was amplified by [[David Carchedi]]. Some aspects of the discussion here are, more or less explicitly, in \begin{itemize}% \item [[Carlos Simpson]], [[Constantin Teleman]], \emph{deRham theorem for $\infty$-stacks} (\href{http://math.berkeley.edu/~teleman/math/simpson.pdf}{pdf}) \end{itemize} For instance something similar to the notion of [[infinity-connected (infinity,1)-site|∞-connected site]] and the [[fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos]] is the content of section 2.16. The \hyperlink{LieTheory}{infinitesimal path ∞-groupoid adjunction} $(\mathbf{Red} \dashv \mathbf{\Pi}_{inf} \dashv \mathbf{\flat}_{inf})$ is essentially discussed in section 3. The notion of geometric realization (see ), is touched on around remark 2.22, referring to \begin{itemize}% \item [[Carlos Simpson]], \emph{The topological realization of a simplicial presheaf} , (\href{http://arxiv.org/abs/q-alg/9609004}{arXiv:q-alg/9609004}). \end{itemize} But, more or less explicitly, the presentation of geometric realization of simplicial presheaves is much older, going back to Artin-Mazur. See [[geometric homotopy groups in an (∞,1)-topos]] for a detailed commented list of literature. A characterization of infinitesimal extensions and formal smoothness by adjoint functors (discussed at [[infinitesimal cohesion]]) is considered in \begin{itemize}% \item [[Maxim Kontsevich]], [[Alexander Rosenberg]], \emph{Noncommutative spaces}, preprint MPI-2004-35 (\href{http://www.mpim-bonn.mpg.de/preprints/send?bid=2331}{ps}, \href{http://www.mpim-bonn.mpg.de/preprints/send?bid=2303}{dvi}) \end{itemize} in the context of \emph{[[Q-categories]]} . \hypertarget{on_cohesive_toposes_proper}{}\subsubsection*{{On cohesive $(\infty,1)$-toposes proper}}\label{on_cohesive_toposes_proper} The material presented here is also in section 3 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} (\href{http://arxiv.org/abs/1310.7930}{arXiv:1310.7930}) \end{itemize} \hypertarget{ReferencesInHoTT}{}\subsubsection*{{In homotopy type theory}}\label{ReferencesInHoTT} Expositions and discussion of the formalization of cohesion in [[homotopy type theory]] is in \begin{itemize}% \item [[Mike Shulman]], \emph{Axiomatic cohesion in HoTT} (\href{http://homotopytypetheory.org/2011/11/02/axiomatic-cohesion-in-hott/}{blog post}) \end{itemize} The corresponding [[Coq]]-code is in \begin{itemize}% \item [[Mike Shulman]], \emph{\href{https://github.com/mikeshulman/HoTT/tree/master/Coq/Subcategories}{HoTT/Coq/Subcategories}} \end{itemize} Exposition is at \begin{itemize}% \item [[Mike Shulman]], \emph{Internalizing the External, or The Joys of Codiscreteness} (\href{http://golem.ph.utexas.edu/category/2011/11/internalizing_the_external_or.html}{blog post}) \end{itemize} [[!redirects cohesive (∞,1)-topos]] [[!redirects cohesive (∞,1)-toposes]] [[!redirects cohesive (infinity,1)-toposes]] [[!redirects cohesive (∞,1)-topoi]] [[!redirects cohesive (infinity,1)-topoi]] [[!redirects cohesive ∞-topos]] [[!redirects cohesive ∞-toposes]] [[!redirects cohesive infinity-topos]] [[!redirects cohesive infinity-toposes]] [[!redirects cohesive ∞-groupoid]] [[!redirects cohesive ∞-groupoids]] [[!redirects cohesive infinity-groupoid]] [[!redirects cohesive infinity-groupoids]] [[!redirects cohesive homotopy theory]] [[!redirects cohesive homotopy theories]] [[!redirects cohesive model topos]] [[!redirects cohesive model toposes]] \end{document}