\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cohesive (infinity,1)-topos -- structures II} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohesive_toposes}{}\paragraph*{{Cohesive $\infty$-Toposes}}\label{cohesive_toposes} [[!include cohesive infinity-toposes - contents]] \begin{quote}% This is a sub-section of the entry \emph{[[cohesive (∞,1)-topos]]} . See there for background and context \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{structures_in_a_cohesive_topos}{Structures in a cohesive $(\infty,1)$-topos}\dotfill \pageref*{structures_in_a_cohesive_topos} \linebreak \noindent\hyperlink{Concordance}{Concordance}\dotfill \pageref*{Concordance} \linebreak \noindent\hyperlink{Homotopy}{Geometric homotopy and Galois theory}\dotfill \pageref*{Homotopy} \linebreak \noindent\hyperlink{vanKampenTheorem}{van Kampen theorem}\dotfill \pageref*{vanKampenTheorem} \linebreak \noindent\hyperlink{Paths}{Paths and geometric Postnikov towers}\dotfill \pageref*{Paths} \linebreak \noindent\hyperlink{Coverings}{Universal coverings and geometric Whitehead towers}\dotfill \pageref*{Coverings} \linebreak \noindent\hyperlink{FlatDifferentialCohomology}{Flat $\infty$-connections and local systems}\dotfill \pageref*{FlatDifferentialCohomology} \linebreak \noindent\hyperlink{deRhamCohomology}{de Rham cohomology}\dotfill \pageref*{deRhamCohomology} \linebreak \noindent\hyperlink{LieAlgebras}{Exponentiated $\infty$-Lie algebras}\dotfill \pageref*{LieAlgebras} \linebreak \noindent\hyperlink{CurvatureCharacteristics}{Maurer-Cartan forms and curvature characteristic forms}\dotfill \pageref*{CurvatureCharacteristics} \linebreak \noindent\hyperlink{DifferentialCohomology}{Differential cohomology}\dotfill \pageref*{DifferentialCohomology} \linebreak \noindent\hyperlink{ChernWeilTheory}{Chern-Weil homomorphism and $\infty$-connections}\dotfill \pageref*{ChernWeilTheory} \linebreak \noindent\hyperlink{ChernSimonsTheory}{Higher holonomy and Chern-Simons functional}\dotfill \pageref*{ChernSimonsTheory} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{structures_in_a_cohesive_topos}{}\subsection*{{Structures in a cohesive $(\infty,1)$-topos}}\label{structures_in_a_cohesive_topos} This continues the list of structures whose first part is at \emph{[[cohesive (infinity,1)-topos -- structures]]} . \hypertarget{Concordance}{}\subsubsection*{{Concordance}}\label{Concordance} Since $\mathbf{H}$ is an [[(∞,1)-topos]] it carries canonically the structure of a [[cartesian closed (∞,1)-category]]. For\newline $X, Y \in \mathbf{H}$, write $Y^X \in \mathbf{H}$ for the corresponding [[internal hom]]. Since $\Pi : \mathbf{H} \to$ [[∞Grpd]] preserves products, we have for all $X,Y, Z \in \mathbf{H}$ canonically induced a morphism \begin{displaymath} \Pi(Y^X) \times \Pi(Z^Y) \stackrel{\simeq}{\to} \Pi(Y^X \times Z^Y) \stackrel{\Pi(comp_{X,Y,Z})}{\to} \Pi(Z^X) \,. \end{displaymath} This should yield an [[(∞,1)-category]] $\tilde \mathbf{H}$ with the same objects as $\mathbf{H}$ and hom-$\infty$-groupoids defined by \begin{displaymath} \tilde \mathbf{H}(X,Y) := \Pi(Y^X) \,. \end{displaymath} We have that \begin{displaymath} \tilde \mathbf{H}(X,\mathbf{B}G) = \Pi(\mathbf{B}G^X) \end{displaymath} is the $\infty$-groupoid whose objects are $G$-[[principal ∞-bundle]]s on $X$ and whose morphisms have the interpretaton of $G$-principal bundles on the cylinder $X \times I$. These are \emph{[[concordance]]s of $\infty$-bundles.} \hypertarget{Homotopy}{}\subsubsection*{{Geometric homotopy and Galois theory}}\label{Homotopy} We discuss canonical internal realizations of the notions of [[homotopy group]], [[local system]] and [[Galois theory]] in $\mathbf{H}$. \begin{defn} \label{}\hypertarget{}{} For $\mathbf{H}$ a [[locally ∞-connected (∞,1)-topos]] and $X \in \mathbf{H}$ an [[object]], we call $\Pi X \in$ [[∞Grpd]] the \textbf{[[fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos]]} of $X$. The ([[categorical homotopy groups in an (∞,1)-topos|categorical]]) [[homotopy group]]s of $\Pi(X)$ we call the [[geometric homotopy groups in an (∞,1)-topos|geometric homotopy groups]] of $X$ \begin{displaymath} \pi_\bullet^{geom}(X) := \pi_\bullet(\Pi (X)) \,. \end{displaymath} \end{defn} \begin{defn} \label{GeometricRealization}\hypertarget{GeometricRealization}{} For $\vert - \vert :$ [[∞Grpd]] $\stackrel{\simeq}{\to}$ [[Top]] the [[homotopy hypothesis]]-[[equivalence of (∞,1)-categories|equivalence]] we write \begin{displaymath} \vert X \vert := \vert \Pi X \vert \in Top \end{displaymath} and call this the \textbf{topological [[geometric realization]]} of $X$, or just the \emph{geometric realization} for short. \end{defn} \begin{note} \label{GeometricRealizationInTheLiterature}\hypertarget{GeometricRealizationInTheLiterature}{} In presentations of $\mathbf{H}$ by a [[model structure on simplicial presheaves]] as in prop. \ref{SimplicialPresheavesOverInfinityCohesviveSite} this abstract notion reproduces the notion of geometric realization of [[∞-stack]]s in (\hyperlink{Simpson}{Simpson}). See remark 2.22 in (\hyperlink{SimpsonTeleman}{SimpsonTeleman}). \end{note} \begin{udef} We say a \textbf{geometric [[homotopy]]} between two morphism $f,g : X \to Y$ in $\mathbf{H}$ is a diagram \begin{displaymath} \itexarray{ X \\ \downarrow^{\mathrlap{(Id,i)}} & \searrow^{\mathrlap{f}} \\ X \times I &\stackrel{\eta}{\to}& Y \\ \uparrow^{\mathrlap{(Id,o)}} & \nearrow_{\mathrlap{g}} \\ X } \end{displaymath} such that $I$ is geometrically connected, $\pi_0^{geom}(I) = *$. \end{udef} \begin{uprop} If $f,g : X\to Y$ are geometrically homotopic in $\mathbf{H}$, then their images $\Pi(f), \Pi(g)$ are equivalent in $\infty Grpd$. \end{uprop} \begin{proof} By the condition that $\Pi$ preserves products in a cohesive $(\infty,1)$-topos we have that the image of the geometric homotopy in $\infty Grpd$ is a diagram of the form \begin{displaymath} \itexarray{ \Pi(X) \\ \downarrow^{\mathrlap{(Id,\Pi(i))}} & \searrow^{\mathrlap{\Pi(f)}} \\ \Pi(X) \times \Pi(I) &\stackrel{\Pi(\eta)}{\to}& \Pi(Y) \\ \uparrow^{\mathrlap{(Id,\Pi(o))}} & \nearrow_{\mathrlap{\Pi(g)}} \\ \Pi(X) } \,. \end{displaymath} Now since $\Pi(I)$ is connected by assumption, there is a diagram \begin{displaymath} \itexarray{ && * \\ & {}^{\mathllap{Id}}\nearrow & \downarrow^{\mathrlap{\Pi(i)}} \\ * &\to& \Pi(I) \\ & {}_{\mathllap{Id}}\searrow & \uparrow^{\mathrlap{\Pi(o)}} \\ && * } \end{displaymath} in [[∞Grpd]]. Taking the product of this diagram with $\Pi(X)$ and pasting the result to the above image $\Pi(\eta)$ of the geometric homotopy constructs the equivalence $\Pi(f) \Rightarrow \Pi(g)$ in $\infty Grpd$. \end{proof} \begin{uprop} For $\mathbf{H}$ a [[locally ∞-connected (∞,1)-topos]], also all its objects $X \in \mathbf{H}$ are locally $\infty$-connected, in the sense their [[petit topos|petit]] [[over-(∞,1)-toposes]] $\mathbf{H}/X$ are locally $\infty$-connected. The two notions of fundamental $\infty$-groupoids of $X$ induced this way do agree, in that there is a natural equivalence \begin{displaymath} \Pi_X(X \in \mathbf{H}/X) \simeq \Pi(X \in \mathbf{H}) \,. \end{displaymath} \end{uprop} \begin{proof} By the general facts recalled at [[étale geometric morphism]] we have a composite [[essential geometric morphism]] \begin{displaymath} (\Pi_X \dashv \Delta_X \dashv \Gamma_X) : \mathbf{H}_{/X} \stackrel{\overset{X_!}{\to}}{\stackrel{\overset{X^*}{\leftarrow}}{\underset{\X_*}{\to}}} \mathbf{H} \stackrel{\overset{\Pi}{\to}}{\stackrel{\overset{\Delta}{\leftarrow}}{\underset{\Gamma}{\to}}} \infty Grpd \end{displaymath} and $X_!$ is given by sending $(Y \to X) \in \mathbf{H}/X$ to $Y \in \mathbf{H}$. \end{proof} \begin{udef} For $\kappa$ a [[regular cardinal]] write \begin{displaymath} Core \infty Grpd_\kappa \in \infty Grpd \end{displaymath} for the [[∞-groupoid]] of $\kappa$-[[small (∞,1)-category|small ∞-groupoid]]s: the [[core]] of the full [[sub-(∞,1)-category]] of [[∞Grpd]] on the $\kappa$-small ones. \end{udef} \begin{uremark} We have \begin{displaymath} Core \infty Grpd_\kappa \simeq \coprod_i \mathbf{B} Aut(F_i) \,, \end{displaymath} where the coproduct ranges over all $\kappa$-small [[homotopy type]]s $[F_i]$ and $Aut(F_i)$ is the [[automorphism ∞-group]] of any representative $F_i$ of $[F_i]$. \end{uremark} \begin{udef} For $X \in \mathbf{H}$ write \begin{displaymath} LConst(X) := \mathbf{H}(X, Disc Core \infty Grpd_\kappa) \,. \end{displaymath} We call this the $\infty$-groupoid of \textbf{[[locally constant ∞-stack]]s} on $X$. \end{udef} \begin{uobservation} Since $Disc$ is [[left adjoint]] and [[right adjoint]] it commutes with [[coproduct]]s and with [[delooping]] and therefore \begin{displaymath} Disc Core \infty Grpd_\kappa \simeq \coprod_i \mathbf{B} Disc Aut(F_i) \,. \end{displaymath} Therefore a cocycle $P \in LConst(X)$ may be identified on each geometric connected component of $X$ as a $Disc Aut(F_i)$-[[principal ∞-bundle]] $P \to X$ over $X$ for the [[∞-group]] object $Disc Aut(F_i) \in \mathbf{H}$. We may think of this as an object $P \in \mathbf{H}/X$ in the [[little topos]] over $X$. This way the objects of $LConst(X)$ are indeed identified $\infty$-stacks over $X$. \end{uobservation} The following proposition says that the central statements of [[Galois theory]] hold for these canonical notions of geometric homotopy groups and locally constant $\infty$-stacks. \begin{uprop} For $\mathbf{H}$ [[locally ∞-connected (∞,1)-topos|locally ∞-connected]] and [[∞-connected (∞,1)-topos|∞-connected]], we have \begin{itemize}% \item a natural equivalence \begin{displaymath} LConst(X) \simeq \infty \mathrm{Grpd}(\Pi(X), \infty Grpd_\kappa) \end{displaymath} of locally constant $\infty$-stacks on $X$ with $\infty$-[[permutation representation]]s of the [[fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos|fundamental ∞-groupoid]] of $X$ ([[local system]]s on $X$); \item for every point $x : * \to X$ a natural equivalence of the endomorphisms of the fiber functor $x^*$ and the [[loop space]] of $\Pi(X)$ at $x$ \begin{displaymath} End( x^* : LConst(X) \to \infty Grpd ) \simeq \Omega_x \Pi(X) \,. \end{displaymath} \end{itemize} \end{uprop} \begin{proof} The first statement is just the adjunction $(\Pi \dashv Disc)$. \begin{displaymath} \begin{aligned} LConst(X) & := \mathbf{H}(X, Disc Core \infty Grpd_\kappa) \\ & \simeq \infty Grpd(\Pi(X), Core \infty Grpd_\kappa) \\ & \simeq \infty Grpd(\Pi(X), \infty Grpd_\kappa) \end{aligned} \,. \end{displaymath} Using this and that $\Pi$ preserves the [[terminal object in an (∞,1)-category|terminal object]], so that the [[adjunct]] of $(* \to X \to Disc Core \infty Grpd_\kappa)$ is $(* \to \Pi(X) \to \infty Grpd_\kappa)$ the second statement follows with an iterated application of the [[(∞,1)-Yoneda lemma]] (this is pure [[Tannaka duality]] as discussed there): The fiber functor $x^* : Func(\Pi(X), \infty Grpd) \to \infty Grpd$ evaluates an $(\infty,1)$-presheaf on $\Pi(X)^{op}$ at $x \in \Pi(X)$. By the [[(∞,1)-Yoneda lemma]] this is the same as homming out of $j(x)$, where $j : \Pi(X)^{op} \to Func(\Pi(X), \infty Grpd)$ is the [[(∞,1)-Yoneda embedding]]: \begin{displaymath} x^* \simeq Hom_{PSh(\Pi(X)^{op})}(j(x), -) \,. \end{displaymath} This means that $x^*$ itself is a representable object in $PSh(PSh(\Pi(X)^{op})^{op})$. If we denote by $\tilde j : PSh(\Pi(X)^{op})^{op} \to PSh(PSh(\Pi(X)^{op})^{op})$ the corresponding Yoneda embedding, then \begin{displaymath} x^* \simeq \tilde j (j (x)) \,. \end{displaymath} With this, we compute the endomorphisms of $x^*$ by applying the [[(∞,1)-Yoneda lemma]] two more times: \begin{displaymath} \begin{aligned} End x^* & \simeq End_{PSh(PSh(\Pi(X)^{op})^{op})} (\tilde j(j (x))) \\ & \simeq End(PSh(\Pi(X))^{op}) (j(x)) \\ & \simeq End_{\Pi(X)^{op}}(x,x) \\ & \simeq Aut_x \Pi(X) \\ & =: \Omega_x \Pi(X) \end{aligned} \,. \end{displaymath} \end{proof} \hypertarget{vanKampenTheorem}{}\subsubsection*{{van Kampen theorem}}\label{vanKampenTheorem} A [[higher homotopy van Kampen theorem|higher]] [[van Kampen theorem]] asserts that passing to [[fundamental ∞-groupoid]]s preserves certain colimits. On a cohesive $(\infty,1)$-topos $\mathbf{H}$ the fundamental $\infty$-groupoid functor $\Pi : \mathbf{H} \to \infty Grpd$ is a [[left adjoint]] [[(∞,1)-functor]] and hence preserves all [[(∞,1)-colimit]]s. More interesting is the question which $(\infty,1)$-colimits of \hyperlink{ConcreteObjects}{concrete spaces} in \begin{displaymath} Conc(\mathbf{H}) \stackrel{\overset{conc}{\leftarrow}}{\underset{inj}{\hookrightarrow}} \mathbf{H} \end{displaymath} are preserved by $\Pi \circ inj : Conc(\mathbf{H}) \to \infty Grpd$. These colimits are computed by first computing them in $\mathbf{H}$ and then applying the concretization functor. So we have \begin{ulemma} Let $U_\bullet : K \to Conc(\mathbf{H})$ be a [[diagram]] such that the [[(∞,1)-colimit]] $\lim_\to inj \circ U_\bullet$ is concrete, $\cdots \simeq inj(X)$. Then the [[fundamental ∞-groupoid]] of $X$ is computed as the $(\infty,1)$-colimit \begin{displaymath} \Pi(X) \simeq {\lim_\to} \Pi(U_\bullet) \,. \end{displaymath} \end{ulemma} In the \hyperlink{Examples}{Examples} we discuss the cohesive $(\infty,1)$-topos $\mathbf{H} = (\infty,1)Sh(TopBall)$ of [[topological ∞-groupoid]]s For that case we recover the ordinary [[higher van Kampen theorem]]: \begin{uprop} Let $X$ be a [[paracompact space|paracompact]] or [[locally contractible space|locally contractible]] [[topological space]]s and $U_1 \hookrightarrow X$, $U_2 \hookrightarrow X$ a [[covering]] by two [[open subsets]]. Then under the [[singular simplicial complex]] functor $Sing : Top \to$ [[sSet]] we have a [[homotopy pushout]] \begin{displaymath} \itexarray{ Sing(U_1) \cap Sing(U_2) &\to& Sing(U_2) \\ \downarrow && \downarrow \\ Sing(U_1) &\to& Sing(X) } \,. \end{displaymath} \end{uprop} \begin{proof} We inject the topological space via the external [[Yoneda embedding]] \begin{displaymath} Top \hookrightarrow Sh(TopBalls) \hookrightarrow \mathbf{H} := (\infty,1)Sh(OpenBalls) \end{displaymath} as a 0-[[truncated]] [[topological ∞-groupoid]] in the cohesive $(\infty,1)$-topos $\mathbf{H}$. Being an [[(∞,1)-category of (∞,1)-sheaves]] this is [[locally presentable (∞,1)-category|presented]] by the [[Bousfield localization of model categories|left Bousfield localization]] $Sh(TopBalls, sSet)_{inj,loc}$ of the injective [[model structure on simplicial sheaves]] on $TopBalls$ (as described at [[models for ∞-stack (∞,1)-toposes]]). Notice that the injection $Top \hookrightarrow Sh(TopBalls)$ of topological spaces as [[concrete sheaves]] on the site of open balls preserves the pushout $X = U_1 \coprod_{U_1 \cap U_2} U_2$. (This is effectively the statement that $X$ as a [[representable functor|representable]] on [[Diff]] is a [[sheaf]].) Accordingly so does the further inclusion into $Sh(TopBall,sSet) \simeq Sh(TopBalls)^{\Delta^{op}}$ as simplicially constant simplicial sheaves. Since cofibrations in that model structure are objectwise and degreewise injective maps, it follows that the ordinary [[pushout]] diagram \begin{displaymath} \itexarray{ U_1 \cap U_2 &\to& U_2 \\ \downarrow && \downarrow \\ U_1 &\to& X } \end{displaymath} in $Sh(TopBalls, sSet)_{inj,loc}$ has all objects cofibrant and is the pushout along a cofibration, hence is a [[homotopy pushout]] (as described there). By the general theorem at [[(∞,1)-colimit]] homotopy pushouts model $(\infty,1)$-pushouts, so that indeed $X$ is the $(\infty,1)$-pushout \begin{displaymath} X \simeq U_1 \coprod_{U_1 \cap U_2} U_2 \in \mathbf{H} \,. \end{displaymath} The proposition now follows with the above observation that $\Pi$ preserves all $(\infty,1)$-colimits and with the statement (from [[topological ∞-groupoid]]) that for a topological space (locally contractible or paracompact) we have $\Pi X \simeq Sing X$. \end{proof} \hypertarget{Paths}{}\subsubsection*{{Paths and geometric Postnikov towers}}\label{Paths} The \hyperlink{Homotopy}{above} construction of the [[fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos|fundamental ∞-groupoid]] of objects in $\mathbf{H}$ as an object in [[∞Grpd]] may be reflected back into $\mathbf{H}$, where it gives a notion of homotopy [[path n-groupoid]]s and a geometric notion of [[Postnikov tower]]s of objects in $\mathbf{H}$. \begin{udef} For $\mathbf{H}$ a [[locally ∞-connected (∞,1)-topos]] define the composite [[adjoint (∞,1)-functor]]s \begin{displaymath} (\mathbf{\Pi} \dashv \mathbf{\flat}) := (Disc \Pi \dashv Disc \Gamma) : \mathbf{H} \to \mathbf{H} \,. \end{displaymath} \end{udef} We say \begin{itemize}% \item $\mathbf{\Pi}(X)$ is the \textbf{path $\infty$-groupoid} of $X$ -- the reflection of the [[fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos]] back into the cohesive context of $\mathbf{H}$; \item $\mathbf{\flat} A$ (``flat $A$'') is the coefficient object for \textbf{\hyperlink{FlatDifferentialCohomology}{flat differential A-cohomology}} or for $A$-[[local system]]s \end{itemize} Write \begin{displaymath} (\tau_n \dashv i_n) : \mathbf{H}_{\leq n} \stackrel{\overset{\tau_{n}}{\leftarrow}}{\underset{i}{\hookrightarrow}} \mathbf{H} \end{displaymath} for the [[reflective sub-(∞,1)-category]] of [[truncated|n-truncated object]]s and \begin{displaymath} \mathbf{\tau}_n : \mathbf{H} \stackrel{\tau_n}{\to} \mathbf{H}_{\leq n} \hookrightarrow \mathbf{H} \end{displaymath} for the truncation-[[localization of an (∞,1)-category|localization]] funtor. We say \begin{displaymath} \mathbf{\Pi}_n : \mathbf{H} \stackrel{\mathbf{\Pi}_n}{\to} \mathbf{H} \stackrel{\mathbf{\tau}_n}{\to} \mathbf{H} \end{displaymath} is the \textbf{homotopy [[path n-groupoid]]} functor. We say that the (truncated) components of the $(\Pi \dashv Disc)$-[[unit of an adjunction|unit]] \begin{displaymath} X \to \mathbf{\Pi}(X) \end{displaymath} are the \textbf{constant path inclusions}. Dually we have canonical morphism \begin{displaymath} \mathbf{\flat}A \to A \,. \end{displaymath} \begin{ulemma} If $\mathbf{H}$ is cohesive, then $\mathbf{\flat}$ has a [[right adjoint]] $\mathbf{\Gamma}$ \begin{displaymath} (\mathbf{\Pi} \dashv \mathbf{\flat} \dashv \mathbf{\Gamma}) := (Disc \Pi \dashv Disc \Gamma \dashv coDisc \Gamma) : \mathbf{H} \stackrel{\overset{\mathbf{\Pi}}{\to}}{\stackrel{\overset{\mathbf{\flat}}{\leftarrow}}{\underset{\mathbf{\Gamma}}{\to}}} \mathbf{H} \,. \end{displaymath} and this makes $\mathbf{H}$ be $\infty$-connected and locally $\infty$-connected over itself. \end{ulemma} \begin{udef} Let $\mathbf{H}$ be a [[locally ∞-connected (∞,1)-topos]]. If $X \in \mathbf{H}$ is [[small-projective]] then the [[over-(∞,1)-topos]] $\mathbf{H}/X$ is \begin{enumerate}% \item [[locally ∞-connected (∞,1)-topos|locally ∞-connected]]; \item [[local (∞,1)-topos|local]]. \end{enumerate} \end{udef} \begin{proof} The first statement is proven at [[locally ∞-connected (∞,1)-topos]], the second at [[local (∞,1)-topos]]. \end{proof} \begin{udef} In a cohesive $(\infty,1)$-topos $\mathbf{H}$, if $X$ is [[small-projective]] then so is its path ∞-groupoid $\mathbf{\Pi}(X)$. \end{udef} \begin{proof} Because of the [[adjoint triple]] of [[adjoint (∞,1)-functor]]s $(\mathbf{\Pi} \dashv \mathbf{\flat} \dashv \mathbf{\Gamma})$ we have for [[diagram]] $A : I \to \mathbf{H}$ that \begin{displaymath} \begin{aligned} \mathbf{H}(\mathbf{\Pi}(X), {\lim_\to}_i A_i) & \simeq \mathbf{H}(X, \mathbf{\flat}{\lim_\to}_i A_i) \\ & \simeq \mathbf{H}(X, {\lim_\to}_i \mathbf{\flat} A_i) \\ & \simeq {\lim_\to}_i \mathbf{H}(X, \mathbf{\flat} A_i) \end{aligned} \,, \end{displaymath} where in the last step we used that $X$ is [[small-projective]] by assumption. \end{proof} \begin{udef} For $X \in \mathbf{H}$ we say that the \textbf{geometric Postnikov tower} of $X$ is the [[Postnikov tower in an (∞,1)-category]] of $\mathbf{\Pi}(X)$: \begin{displaymath} \mathbf{\Pi}(X) \to \cdots \to \mathbf{\Pi}_2(X) \to \mathbf{\Pi}_1(X) \to \mathbf{\Pi}_0(X) \,. \end{displaymath} \end{udef} \hypertarget{Coverings}{}\subsubsection*{{Universal coverings and geometric Whitehead towers}}\label{Coverings} We discuss an intrinsic notion of [[Whitehead tower]]s in a [[locally ∞-connected (∞,1)-topos|locally ∞-connected]] [[∞-connected (∞,1)-topos]] $\mathbf{H}$. \begin{udef} For $X \in \mathbf{H}$ a [[pointed object]], the \textbf{[[Whitehead tower in an (∞,1)-topos|geometric Whitehead tower]]} of $X$ is the sequence of objects \begin{displaymath} X^{\mathbf{(\infty)}} \to \cdots \to X^{\mathbf{(2)}} \to X^{\mathbf{(1)}} \to X^{\mathbf{(0)}} \simeq X \end{displaymath} in $\mathbf{H}$, where for each $n \in \mathbb{N}$ the object $X^{(n+1)}$ is the [[homotopy fiber]] of the canonical morphism $X \to \mathbf{\Pi}_{n+1} X$ to the \hyperlink{Paths}{path n+1-groupoid} of $X$. We call $X^{\mathbf{(n+1)}}$ the $(n+1)$-fold \textbf{[[universal covering space]]} of $X$. We write $X^{\mathbf{(\infty)}}$ for the homotopy fiber of the untruncated constant path inclusion. \begin{displaymath} X^{\mathbf{(\infty)}} \to X \to \mathbf{\Pi}(X) \,. \end{displaymath} Here the morphisms $X^{\mathbf{(n+1)}} \to X^{\mathbf{n}}$ are those induced from this \begin{displaymath} \itexarray{ X^{\mathbf{(n)}} &\to& * \\ \downarrow && \downarrow \\ X^{\mathbf{(n-1)}} & \to & \mathbf{B}^n \mathbf{\pi}_n(X) &\to& * \\ \downarrow && \downarrow && \downarrow \\ X &\to& \mathbf{\Pi}_n(X) &\to& \mathbf{\Pi}_{(n-1)}(X) } \,, \end{displaymath} where the object $\mathbf{B}^n \mathbf{\pi}_n(X)$ is defined as the [[homotopy fiber]] of the bottom right morphism. \end{udef} \begin{uprop} Every object $X \in \mathbf{H}$ is covered by objects of the form $X^{\mathbf{(\infty)}}$ for different choices of base points in $X$, in the sense that every $X$ is the [[(∞,1)-colimit]] over a [[diagram]] whose vertices are of this form. \end{uprop} \begin{proof} Consider the diagram \begin{displaymath} \itexarray{ {\lim_\to}_{s \in \Pi(X)} (i^* *) &\to& {\lim_\to}_{s \in \Pi(X)} * \\ {}^{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\simeq}} \\ X &\stackrel{i}{\to}& \mathbf{\Pi}(X) } \,. \end{displaymath} The bottom morphism is the constant path inclusion, the $(\Pi \dashv Disc)$-[[unit of an adjunction|unit]]. The right morphism is the [[equivalence in an (∞,1)-category]] that is the image under $Disc$ of the decomposition ${\lim_\to}_S * \stackrel{\simeq}{\to} S$ of every [[∞-groupoid]] as the [[(∞,1)-colimit]] (see there) over itself of the [[(∞,1)-functor]] constant on the point. The left morphism is the [[(∞,1)-pullback]] along $i$ of this equivalence, hence itself an equivalence. By [[universal colimits]] in the [[(∞,1)-topos]] $\mathbf{H}$ the top left object is the [[(∞,1)-colimit]] over the single [[homotopy fiber]]s $i^* *_s$ of the form $X^{\mathbf{(\infty)}}$ as indicated. \end{proof} \begin{uprop} The inclusion $\Pi(i^* *) \to \Pi(X)$ of the [[fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos|fundamental ∞-groupoid]] $\Pi(i^* *)$ of each of these objects into $\Pi(X)$ is homotopic to the point. \end{uprop} \begin{proof} We apply $\Pi(-)$ to the above diagram over a single vertex $s$ and attach the $(\Pi \dashv Disc)$-[[unit of an adjunction|counit]] to get \begin{displaymath} \itexarray{ \Pi(i^* *) &\to& &\to& * \\ \downarrow && && \downarrow \\ \Pi X &\stackrel{\Pi(i)}{\to}& \Pi Disc \Pi(X) &\to& \Pi(X) } \,. \end{displaymath} Then the bottom morphism is an equivalence by the $(\Pi \dashv Disc)$-[[zig-zag-identity]]. \end{proof} \hypertarget{FlatDifferentialCohomology}{}\subsubsection*{{Flat $\infty$-connections and local systems}}\label{FlatDifferentialCohomology} We describe for a [[locally ∞-connected (∞,1)-topos]] $\mathbf{H}$ a canonical intrinsic notion of \emph{flat} [[connections on ∞-bundles]], \emph{flat} [[higher parallel transport]] and higher [[local system]]s. Write $(\mathbf{\Pi} \dashv\mathbf{\flat}) := (Disc \Pi \dashv Disc \Gamma) : \mathbf{H} \to \mathbf{H}$ for the adjunction given by the \hyperlink{Paths}{path ∞-groupoid}. Notice that this comes with the canonical $(\Pi \dashv Disc)$-[[unit of an adjunction|unit]] with components \begin{displaymath} X \to \mathbf{\Pi}(X) \end{displaymath} and the $(Disc \dashv \Gamma)$-counit with components \begin{displaymath} \mathbf{\flat} A \to A \,. \end{displaymath} \begin{udef} For $X, A \in \mathbf{H}$ we write \begin{displaymath} \mathbf{H}_{flat}(X,A) := \mathbf{H}(\mathbf{\Pi}X, A) \end{displaymath} and call $H_{flat}(X,A) := \pi_0 \mathbf{H}_{flat}(X,A)$ the \textbf{flat (nonabelian) differential cohomology} of $X$ with coefficients in $A$. We say a morphism $\nabla : \mathbf{\Pi}(X) \to A$ is a \textbf{flat [[connection on an ∞-bundle|∞-connnection]] on the [[principal ∞-bundle]] corresponding to $X \to \mathbf{\Pi}(X) \stackrel{\nabla}{\to} A$, or an}$A$-[[local system]]** on $X$. The induced morphism \begin{displaymath} \mathbf{H}_{flat}(X,A) \to \mathbf{H}(X,A) \end{displaymath} we say is the [[forgetful functor]] that forgets flat connections. \end{udef} \begin{uremark} The object $\mathbf{\Pi}(X)$ has the interpretation of the \hyperlink{Paths}{path ∞-groupoid} of $X$: it is a cohesive $\infty$-groupoid whose [[k-morphism]]s may be thought of as generated from the $k$-morphisms in $X$ and $k$-dimensional cohesive paths in $X$. Accordingly a mophism $\mathbf{Pi}(X) \to A$ may be thought of as assigning \begin{itemize}% \item to each point of $X$ a fiber in $A$; \item to each path in $X$ an equivalence between these fibers; \item to each disk in $X$ a 2-equivalalence between these equivaleces associated to its boundary \item and so on. \end{itemize} This we think of as encoding a flat [[higher parallel transport]] on $X$, coming from some flat $\infty$-connection and \emph{defining} this flat $\infty$-connection. \end{uremark} \begin{ulemma} By the $(\mathbf{\Pi} \dashv \mathbf{\flat})$-adjunction we have a [[natural transformation|natural]] equivalence \begin{displaymath} \mathbf{H}_{flat}(X,A) \simeq \mathbf{H}(X,\mathbf{\flat}A) \,. \end{displaymath} A [[cocycle]] $g : X \to A$ for a [[principal ∞-bundle]] on $X$ is in the image of \begin{displaymath} \mathbf{H}_{flat}(X,A) \to \mathbf{H}(X,A) \end{displaymath} precisely if there is a lift $\nabla$ in the [[diagram]] \begin{displaymath} \itexarray{ && \mathbf{\flat}A \\ & {}^{\nabla}\nearrow& \downarrow \\ X &\stackrel{g}{\to}& A } \,. \end{displaymath} \end{ulemma} We call $\mathbf{\flat}A$ the \textbf{coefficient object for flat $A$-connections}. \begin{uprop} For $G := Disc G_0 \in \mathbf{H}$ a [[discrete ∞-groupoid|discrete ∞-group]] the canonical morphism $\mathbf{H}_{flat}(X,\mathbf{B}G) \to \mathbf{H}(X,\mathbf{B}G)$ is an [[equivalence in an (∞,1)-category|equivalence]]. \end{uprop} \begin{proof} Since $Disc$ is a [[full and faithful (∞,1)-functor]] we have that the [[unit of an adjunction|unit]] $Id \to \Gamma Disc$ is a natural equivalence. It follows that on $Disc G_0$ also the counit $Disc \Gamma Disc G_0 \to Disc G_0$ is a weak equivalence (since by the [[triangle identity]] we have that $Disc G_0 \stackrel{\simeq}{\to} Disc \Gamma Disc G_0 \to Disc G_0$ is the identity). \end{proof} \begin{uremark} This says that for discrete structure [[∞-group]]s $G$ there is an essentially unique flat $\infty$-connection on any $G$-[[principal ∞-bundle]]. Moreover, the further equivalence \begin{displaymath} \mathbf{H}(\mathbf{\Pi}(X), \mathbf{B}G) \simeq \mathbf{H}_{flat}(X, \mathbf{B}G) \simeq \mathbf{H}(X, \mathbf{B}G) \end{displaymath} may be read as saying that the $G$-principal $\infty$-bundle is entirely characterized by the flat [[higher parallel transport]] of this unique $\infty$-connection. \end{uremark} \hypertarget{deRhamCohomology}{}\subsubsection*{{de Rham cohomology}}\label{deRhamCohomology} In every [[locally ∞-connected (∞,1)-topos]] $\mathbf{H}$ there is an intrinsic notion of [[nonabelian cohomology|nonabelian]] [[de Rham cohomology]]. \begin{udef} For $X \in \mathbf{H}$ an object, write $\mathbf{\Pi}_{dR}X := * \coprod_X \mathbf{\Pi} X$ for the [[(∞,1)-colimit|(∞,1)-pushout]] \begin{displaymath} \itexarray{ X &\to& * \\ \downarrow && \downarrow \\ \mathbf{\Pi}(X) &\to& \mathbf{\Pi}_{dR}X } \,. \end{displaymath} For $* \to A$ any [[pointed object]] in $\mathbf{H}$, write $\mathbf{\flat}_{dR} A : * \prod_A \mathbf{\flat}A$ for the [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ \mathbf{\flat}_{dR} A &\to& \mathbf{\flat} A \\ \downarrow && \downarrow \\ * &\to& A } \,. \end{displaymath} \end{udef} \begin{uprop} This construction yields a pair of [[adjoint (∞,1)-functor]]s \begin{displaymath} (\mathbf{\Pi}_{dR} \dashv \mathbf{\flat}_{dR} ) : */\mathbf{H} \stackrel{ \overset{\mathbf{\Pi}_{dR}}{\leftarrow} }{ \underset{\mathbf{\flat}_{dR}}{\to} } \mathbf{H} \,. \end{displaymath} \end{uprop} \begin{proof} We check the defining natural hom-equivalence \begin{displaymath} {*}/\mathbf{H}(\mathbf{\Pi}_{dR}X,A) \simeq \mathbf{H}(X, \mathbf{\flat}_{dR}A) \,. \end{displaymath} The hom-space in the [[over-(∞,1)-category|under-(∞,1)-category]] $*/\mathbf{H}$ is (as discussed there), computed by the [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ */\mathbf{H}(\mathbf{\Pi}_{dR}X, A) &\to& \mathbf{H}(\mathbf{\Pi}_{dR}X, A) \\ \downarrow && \downarrow \\ * &\stackrel{pt_A}{\to}& \mathbf{H}(*,A) } \,. \end{displaymath} By the fact that the [[hom-functor]] $\mathbf{H}(-,-) : \mathbf{H}^{op} \times \mathbf{H} \to \infty Grpd$ preserves limits in both arguments we have a natural equivalence \begin{displaymath} \begin{aligned} \mathbf{H}(\mathbf{\Pi}_{dR} X, A) & := \mathbf{H}( *\coprod_{X} \mathbf{\Pi}(X), A ) \\ & \simeq \mathbf{H}(*,A) \prod_{\mathbf{H}(X,A)} \mathbf{H}(\mathbf{\Pi}(X),A) \end{aligned} \,. \end{displaymath} We paste this pullback to the above pullback diagram to obtain \begin{displaymath} \itexarray{ */\mathbf{H}(\mathbf{\Pi}_{dR}X, A) &\to& \mathbf{H}(\mathbf{\Pi}_{dR}X, A) &\to& \mathbf{H}(\mathbf{\Pi}(X),A) \\ \downarrow && \downarrow && \downarrow \\ * &\stackrel{pt_A}{\to}& \mathbf{H}(*,A) &\to& \mathbf{H}(X,A) } \,. \end{displaymath} By the pasting law for [[(∞,1)-pullback]]s the outer diagram is still a pullback. We may evidently rewrite the bottom composite as in \begin{displaymath} \itexarray{ */\mathbf{H}(\mathbf{\Pi}_{dR}X, A) &\to& &\to& \mathbf{H}(\mathbf{\Pi}(X),A) \\ \downarrow && && \downarrow \\ * &\stackrel{\simeq}{\to}& \mathbf{H}(X,*) &\stackrel{(pt_A)_*}{\to}& \mathbf{H}(X,A) } \,. \end{displaymath} This exhibits the hom-space as the pullback \begin{displaymath} \begin{aligned} */\mathbf{H}(\mathbf{\Pi}_{dR}(X),A) \simeq \mathbf{H}(X,*) \prod_{\mathbf{H}(X,A)} \mathbf{H}(X,\mathbf{\flat} A) \end{aligned} \,, \end{displaymath} where we used the $(\mathbf{\Pi} \dashv \mathbf{\flat})$-adjunction. Now using again that $\mathbf{H}(X,-)$ preserves pullbacks, this is \begin{displaymath} \cdots \simeq \mathbf{H}(X, * \prod_A \mathbf{\flat}A ) \simeq \mathbf{H}(X , \mathbf{\flat}_{dR}A) \,. \end{displaymath} \end{proof} \begin{uprop} If $\mathbf{H}$ is also [[local (∞,1)-topos|local]], then there is a further [[right adjoint]] $\mathbf{\Gamma}_{dR}$ \begin{displaymath} (\mathbf{\Pi}_{dR} \dashv \mathbf{\flat}_{dR} \dashv \mathbf{\Gamma}_{dR}) : \mathbf{H} \stackrel{\overset{\mathbf{\Pi}_{dR}}{\to}}{\stackrel{\stackrel{\mathbf{\flat}_{dR}}{\leftarrow}}{\underset{\mathbf{\Gamma}_{dR}}{\to}}} */\mathbf{H} \end{displaymath} given by \begin{displaymath} \mathbf{\Gamma}_{dR} X {:=} * \coprod_{X} \mathbf{\Gamma}(X) \,, \end{displaymath} where $(\mathbf{\Pi} \dashv \mathbf{\flat} \dashv \mathbf{\Gamma}) : \mathbf{H} \to \mathbf{H}$ is the triple of adjunctions discussed at \hyperlink{Paths}{Paths}. \end{uprop} \begin{proof} This follows by the same kind of argument as above. \end{proof} \begin{udef} For $X, A \in \mathbf{H}$ we write \begin{displaymath} \mathbf{H}_{dR}(X,A) := \mathbf{H}(\mathbf{\Pi}_{dR}X, A) \simeq \mathbf{H}(X, \mathbf{\flat}_{dR} A) \,. \end{displaymath} A [[cocycle]] $\omega : X \to \mathbf{\flat}_{dR}A$ we call an \textbf{flat $A$-valued differential form} on $X$. We say that $H_{dR}(X,A) {:=} \pi_0 \mathbf{H}_{dR}(X,A)$ is the \textbf{de Rham cohomology} of $X$ with coefficients in $A$. \end{udef} \begin{uremark} A [[cocycle]] in de Rham cohomology \begin{displaymath} \omega : \mathbf{\Pi}_{dR}X \to A \end{displaymath} is precisely a \hyperlink{FlatDifferentialCohomology}{flat ∞-connetion} on a \emph{trivializable} $A$-principal $\infty$-bundle. More precisely, $\mathbf{H}_{dR}(X,A)$ is the [[homotopy fiber]] of the [[forgetful functor]] from $\infty$-bundles with flat $\infty$-connection to $\infty$-bundles: we have an [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ \mathbf{H}_{dR}(X,A) &\to& * \\ \downarrow && \downarrow \\ \mathbf{H}_{flat}(X,A) &\to& \mathbf{H}(X,A) } \,. \end{displaymath} \end{uremark} \begin{proof} This follows by the fact that the [[hom-functor]] $\mathbf{H}(X,-)$ preserves the defining [[(∞,1)-pullback]] for $\mathbf{\flat}_{dR} A$. \end{proof} Just for emphasis, notice the dual description of this situation: by the [[universal property]] of the [[(∞,1)-colimit]] that defines $\mathbf{\Pi}_{dR} X$ we have that $\omega$ corresponds to a diagram \begin{displaymath} \itexarray{ X &\to& * \\ \downarrow &\swArrow_{\simeq}& \downarrow \\ \mathbf{\Pi}(X) &\stackrel{\omega}{\to}& A } \,. \end{displaymath} The bottom horizontal morphism is a flat connection on the $\infty$-bundle given by the cocycle $X \to \mathbf{\Pi}(X) \stackrel{\omega}{\to} A$. The diagram says that this is equivalent to the trivial bundle given by the trivial cocycle $X \to * \to A$. \begin{uprop} The de Rham cohomology with coefficients in discrete objects is trivial: for all $S \in \infty Grpd$ we have \begin{displaymath} \mathbf{\flat}_{dR} Disc S \simeq * \,. \end{displaymath} \end{uprop} \begin{proof} Using that in a [[∞-connected (∞,1)-topos]] the functor $Disc$ is a [[full and faithful (∞,1)-functor]] so that the [[unit of an adjunction|unit]] $Id \to \Gamma Disc$ is an [[equivalence in an (∞,1)-category|equivalence]] and using that by the [[zig-zag identity]] we have then that the [[unit of an adjunction|counit]] component $\mathbf{\flat} Disc S := Disc \Gamma Disc S \to Disc S$ is also an equivalence, we have \begin{displaymath} \begin{aligned} \mathbf{\flat}_{dR} Disc S & {:=} * \prod_{Disc S} \mathbf{\flat} Disc S \\ & \simeq * \prod_{Disc S} Disc S \\ & \simeq * \end{aligned} \,, \end{displaymath} since the pullback of an equivalence is an equivalence. \end{proof} \begin{uprop} In a cohesive $\mathbf{H}$ \emph{\hyperlink{PiecesHavePoints}{pieces have points}} precisely if for all $X \in \mathbf{H}$, the de Rham coefficient object $\mathbf{\Pi}_{dR} X$ is \emph{globally [[connected]]} in that $\pi_0 \mathbf{H}(*, \mathbf{\Pi}_{dR}X) = *$. If $X$ has at least one point ($\pi_0(\Gamma X) \neq \emptyset$) and is geometrically connected ($\pi_0 (\Pi X) = {*}$) then $\mathbf{\Pi}_{\mathrm{dR}}(X)$ is also locally connected: $\tau_0 \mathbf{\Pi}_{\mathrm{dR}}X \simeq {*} \in \mathbf{H}$. \end{uprop} \begin{proof} Since $\Gamma$ preserves [[(∞,1)-colimit]]s in a cohesive $(\infty,1)$-topos we have \begin{displaymath} \begin{aligned} \mathbf{H}(*, \mathbf{\Pi}_{dR}X) & \simeq \Gamma \mathbf{\Pi}_{dR} X \\ & \simeq * \coprod_{\Gamma X} \Gamma \mathbf{\Pi}X \\ & \simeq * \coprod_{\Gamma X} \Pi X \end{aligned} \,, \end{displaymath} where in the last step we used that $Disc$ is a [[full and faithful (∞,1)-functor|full and faithful]], so that there is an equivalence $\Gamma \mathbf{\Pi}X := \Gamma Disc \Pi X \simeq \Pi X$. To analyse this [[(∞,1)-colimit|(∞,1)pushout]] we present it by a [[homotopy pushout]] in the standard [[model structure on simplicial sets]] $\mathrm{sSet}_{\mathrm{Quillen}}$. Denoting by $\Gamma X$ and $\Pi X$ any representatives in $\mathrm{sSet}_{\mathrm{Quillen}}$ of the objects of the same name in $\infty \mathrm{Grpd}$, this may be computed by the ordinary [[pushout]] in [[sSet]] \begin{displaymath} \itexarray{ \Gamma X &\to& (\Gamma X) \times \Delta[1] \coprod_{\Gamma X} {*} \\ \downarrow && \downarrow \\ \Pi X &\to & Q } \,, \end{displaymath} where on the right we have inserted the [[cone]] on $\Gamma X$ in order to turn the top morphism into a cofibration. From this ordinary pushout it is clear that the connected components of $Q$ are obtained from those of $\Pi X$ by identifying all those in the image of a connected component of $\Gamma X$. So if the left morphism is surjective on $\pi_0$ then $\pi_0(Q) = *$. This is precisely the condition that \hyperlink{PiecesHavePoints}{pieces have points} in $\mathbf{H}$. For the local analysis we consider the same setup objectwise in the injective [[model structure on simplicial presheaves]] $[C^{\mathrm{op}}, \mathrm{sSet}]_{\mathrm{inj},\mathrm{loc}}$. For any $U \in C$ we then have the pushout $Q_U$ in \begin{displaymath} \itexarray{ X(U) &\to & (X(U)) \times \Delta[1] \coprod_{X(U)} {*} \\ \downarrow && \downarrow \\ \mathrm{sSet}(\Gamma(U), \Pi X) & \to & Q_U } \,, \end{displaymath} as a model for the value of the simplicial presheaf presenting $\mathbf{\Pi}_{\mathrm{dR}}(X)$. If $X$ is geometrically connected then $\pi_0 \mathrm{sSet}(\Gamma(U), \Pi(X)) = *$ and hence for the left morphism to be surjective on $\pi_0$ it suffices that the top left object is not empty. Since the simplicial set $X(U)$ contains at least the vertices $U \to * \to X$ of which there is by assumption at least one, this is the case. \end{proof} \begin{uremark} In summary this means that in a cohesive $(\infty,1)$-topos the objects $\mathbf{\Pi}_{dR} X$ have the abstract properties of [[de Rham schematic homotopy type|pointed geometric de Rham homotopy types]]. In the \hyperlink{Examples}{Examples} we will see that, indeed, the intrinsic de Rham cohomology $H_{dR}(X, A) {:=} \pi_0 \mathbf{H}(\mathbf{\Pi}_{dR} X, A)$ reproduces ordinary de Rham cohomology in degree $d\gt 1$. In degree 0 the intrinsic de Rham cohomology is necessrily trivial, while in degree 1 we find that it reproduces closed 1-forms, not divided out by exact forms. This difference to ordinary de Rham cohomology in the lowest two degrees may be interpreted in terms of the obstruction-theoretic meaning of de Rham cohomology by which we essentially characterized it above: we have that the intrinsic $H_{dR}^n(X,K)$ is the home for the obstructions to flatness of $\mathbf{B}^{n-2}K$-[[principal ∞-bundle]]s. For $n = 1$ this are groupoid-principal bundles over the \emph{groupoid} with $K$ as its space of objects. But the 1-form curvatures of groupoid bundles are not to be regarded modulo exact forms. More details on this are at [[circle n-bundle with connection]]. \end{uremark} \hypertarget{LieAlgebras}{}\subsubsection*{{Exponentiated $\infty$-Lie algebras}}\label{LieAlgebras} \begin{udef} For a [[connected]] object $\mathbf{B}\exp(\mathfrak{g})$ in $\mathbf{H}$ that is \emph{geometrically contractible} \begin{displaymath} \Pi (\mathbf{B}\exp(\mathfrak{g})) \simeq * \end{displaymath} we call its [[loop space object]] $\exp(\mathfrak{g}) := \Omega_* \mathbf{B}\exp(\mathfrak{g})$ the \textbf{[[Lie integration]] of an [[∞-Lie algebra]]} in $\mathbf{H}$. \end{udef} \begin{udef} Set \begin{displaymath} \exp Lie := \mathbf{\Pi}_{dR} \circ \mathbf{\flat}_{dR} : */\mathbf{H} \to */\mathbf{H} \,. \end{displaymath} \end{udef} \begin{uprop} If $\mathbf{H}$ is cohesive, then $\exp Lie$ is a [[left adjoint]]. \end{uprop} \begin{proof} When $\mathbf{H}$ is cohesive we have the \hyperlink{TripleOfDeRhamAdjunctions}{de Rham triple of adjunction} $(\mathbf{\Pi}_{dR} \dashv \mathbf{\flat}_{dR} \dashv \mathbf{\Gamma}_{dR})$. Accordingly then $Lie$ is part of an [[adjunction]] \begin{displaymath} (\exp Lie \dashv \mathbf{\Gamma}_{dR}\mathbf{\flat}_{dR}) \,. \end{displaymath} \end{proof} \begin{uexample} For all $X$ the object $\mathbf{\Pi}_{dR}(X)$ is geometrically contractible. \end{uexample} \begin{proof} Since on the [[locally ∞-connected (∞,1)-topos]] and [[∞-connected (∞,1)-topos|∞-connected]] $\mathbf{H}$ the functor $\Pi$ preserves [[(∞,1)-colimit]]s and the [[terminal object in an (∞,1)-category|terminal object]], we have \begin{displaymath} \begin{aligned} \Pi \mathbf{\Pi}_{dR} X & {:=} \Pi (*) \coprod_{\Pi X} \Pi \mathbf{\Pi} X \\ & \simeq * \coprod_{\Pi X} \Pi Disc \Pi X \\ & \simeq * \coprod_{\Pi X} \Pi X & \simeq * \end{aligned} \,, \end{displaymath} where we used that in the [[∞-connected (∞,1)-topos|∞-connected]] $\mathbf{H}$ the functor $Disc$ is[[full and faithful (∞,1)-functor|full and faithful]]. \end{proof} \begin{ucorollary} We have for every $\mathbf{B}G$ that $\exp Lie \mathbf{B}G$ is geometrically contractible. \end{ucorollary} We shall write $\mathbf{B}\exp(\mathfrak{g})$ for $\exp Lie \mathbf{B}G$, when the context is clear. \begin{uprop} Every \hyperlink{deRhamCohomology}{de Rham cocycle} $\omega : \mathbf{\Pi}_{dR} X \to \mathbf{B}G$ factors through the ∞-Lie algebra of $G$ \begin{displaymath} \itexarray{ && \mathbf{B}\exp(\mathfrak{g}) \\ & \nearrow & \downarrow \\ \mathbf{\Pi}_{dR}X &\stackrel{\omega}{\to}& \mathbf{B}G } \,. \end{displaymath} \end{uprop} \begin{proof} By the of $(\mathbf{\Pi}_{dR} \dashv \mathbf{\flat}_{dR})$ we have that $\omega$ factors through the [[unit of an adjunction|counit]9 $\exp Lie \mathbf{B}G \to \mathbf{B}G$. \end{proof} Therefore instead of speaking of a $G$-valued de Rham cocycle, it is less redundant to speak of an $\exp(\mathfrak{g})$-valued de Rham cocycle. In particular we have the following. \begin{uprop} Every morphism $\exp Lie \mathbf{B}H \to \mathbf{B}G$ from an exponentiated $\infty$-Lie algebra to an $\infty$-group factors through the exponentiated $\infty$-Lie algebra of that $\infty$-group \begin{displaymath} \itexarray{ \mathbf{B}\exp(\mathfrak{h}) &\to& \mathbf{B}\exp(\mathfrak{g}) \\ & \searrow& \downarrow \\ && \mathbf{B}G } \,. \end{displaymath} \end{uprop} \begin{uprop} If $\mathbf{H}$ is cohesive then we have \begin{displaymath} \exp Lie \circ \exp Lie \simeq \exp Lie \circ \Sigma \circ \Omega \,. \end{displaymath} \end{uprop} \begin{proof} First observe that for all $A \in */\mathbf{H}$ we have \begin{displaymath} \mathbf{\flat} \mathbf{\flat}_{dR} A \simeq * \end{displaymath} This follows using \begin{itemize}% \item $\mathbf{\flat}$ is a [[right adjoint]] and hence preserves [[(∞,1)-pullback]]s; \item $\mathbf{\flat} \mathbf{\flat} := Disc \Gamma Disc \Gamma \simeq Disc \Gamma =: \mathbf{\flat}$ by the fact that $Disc$ is a [[full and faithful (∞,1)-functor]]; \item the counit $\mathbf{\flat} \mathbf{\flat} A \to \mathbf{\flat} A$ is equivalent to the identity, by the [[zig-zag-identity]] of the [[adjunction]] and using that equivalences satisfy [[category with weak equivalences|2-out-of-3]]. \end{itemize} by computing \begin{displaymath} \begin{aligned} \mathbf{\flat} \mathbf{\flat}_{dR} A & * \times_{\mathbf{\flat}A} \mathbf{\flat}\mathbf{\flat}A \\ & \simeq * \times_{\mathbf{\flat}A} \mathbf{\flat}A \\ & \simeq * \end{aligned} \,, \end{displaymath} using that the [[(∞,1)-pullback]] of an [[equivalence in an (∞,1)-category|equivalence]] is an equivalence. From this we deduce that \begin{displaymath} \mathbf{\flat}_{dR} \circ \mathbf{\flat}_{dR} \simeq \mathbf{\flat}_{dR} \circ \Omega \,. \end{displaymath} by computing for all $A \in \mathbf{H}$ \begin{displaymath} \begin{aligned} \mathbf{\flat}_{dR} \circ \mathbf{\flat}_{dR} A & \simeq * \times_{\mathbf{\flat}_{dR} A} \mathbf{\flat}\mathbf{\flat}_{dR} A \\ & \simeq * \times_{\mathbf{\flat}_{dR} A} * \\ & \simeq \mathbf{\flat}_{dR}( * \times_A * ) \\ & \simeq \mathbf{\flat}_{dR} \Omega A \end{aligned} \,. \end{displaymath} Also observe that by a \hyperlink{deRhamWithDiscCoeffsIsTrivial}{proposition above} we have \begin{displaymath} \mathbf{\flat}_{dR} \mathbf{\Pi} X \simeq * \end{displaymath} for all $X \in \mathbf{H}$. Finally to obtain $\exp Lie \circ \exp Lie$ we do one more computation of this sort, using that \begin{itemize}% \item $\exp Lie := \mathbf{\Pi}_{dR} \mathbf{\flat}_{dR}$ preserves the terminal object (since $\mathbf{H}$ is [[locally ∞-connected (∞,1)-topos|locally ∞-connected]] and [[∞-connected (∞,1)-topos|∞-connected]]) \item and that it is a [[left adjoint]] by \hyperlink{LieAsALeftAdjoint}{the above}, since $\mathbf{H}$ is assumed to be cohesive. \end{itemize} We compute: \begin{displaymath} \begin{aligned} \exp Lie \exp Lie A & \simeq \exp Lie \mathbf{\Pi}_{dR} \mathbf{\flat}_{dR} A \\ & \simeq * \coprod_{\exp Lie \mathbf{\flat}_{dR} A} \exp Lie \mathbf{\Pi} \mathbf{\flat}_{dR} A \\ & \simeq * \coprod_{\exp Lie \mathbf{\flat}_{dR} A} \mathbf{\Pi}_{dR} \mathbf{\flat}_{dR} \mathbf{\Pi} \mathbf{\flat}_{dR} A \\ & \simeq * \coprod_{\exp Lie \mathbf{\flat}_{dR} A} * \\ & \simeq * \coprod_{\mathbf{\Pi}_{dR} \mathbf{\flat}_{dR} \mathbf{\flat}_{dR} A} * \\ & \simeq * \coprod_{\mathbf{\Pi}_{dR} \mathbf{\flat}_{dR} \Omega A} * \\ & \simeq * \coprod_{\exp Lie \Omega A} * \\ & \simeq \exp Lie ( * \coprod_{\Omega A} * ) \\ & \simeq \exp Lie \Sigma \Omega A \end{aligned} \,. \end{displaymath} \end{proof} \hypertarget{CurvatureCharacteristics}{}\subsubsection*{{Maurer-Cartan forms and curvature characteristic forms}}\label{CurvatureCharacteristics} In the \hyperlink{deRhamCohomology}{intrinsic de Rham cohomology} of a [[locally ∞-connected (∞,1)-topos|locally ∞-connected]] [[∞-connected (∞,1)-topos|∞-connected]] there exist canonical cocycles that we may identify with [[Maurer-Cartan form]]s and with universal [[curvature characteristic form]]s. \begin{udef} For $G \in \mathbf{H}$ an [[∞-group]], write \begin{displaymath} \theta : G \to \mathbf{\flat}_{dR} \mathbf{B}G \end{displaymath} for the $\mathfrak{g}$-\hyperlink{LieAlgebras}{valued} de Rham cocycle on $G$ which is induced by the \begin{displaymath} \itexarray{ G &\to& * \\ {}^{\mathllap{\theta}}\downarrow && \downarrow \\ \mathbf{\flat}_{dR} \mathbf{B}G &\to& \mathbf{\flat}\mathbf{B}G \\ \downarrow && \downarrow \\ * &\to& \mathbf{B}G } \end{displaymath} and the \hyperlink{LieValuesofDeRham}{above proposition}. We call $\theta$ the \textbf{[[Maurer-Cartan form]]} on $G$. \end{udef} \begin{uremark} By postcomposition the Maurer-Cartan form sends $G$-valued functions on $X$ to $\mathfrak{g}$-valued forms on $X$ \begin{displaymath} \theta_* : \mathbf{H}(X,G) \to \mathbf{H}^1_{dR}(X,G) \,. \end{displaymath} \end{uremark} \begin{udefn} For $G = \mathbf{B}^n A$ an [[Eilenberg-MacLane object]], we also write \begin{displaymath} curv : \mathbf{B}^n A \to \mathbf{\flat}_{dR} \mathbf{B}^{n+1} A \end{displaymath} for the intrinsic Maurer-Cartan form and call this the intrinsic \textbf{universal [[curvature characteristic form]]} on $\mathbf{B}^n A$. \end{udefn} \hypertarget{DifferentialCohomology}{}\subsubsection*{{Differential cohomology}}\label{DifferentialCohomology} In every [[locally ∞-connected (∞,1)-topos|locally ∞-connected]] [[∞-connected (∞,1)-topos]] there is an intrinsic notion of [[ordinary differential cohomology]]. Fix a 0-[[truncated]] [[abelian group|abelian]] [[group object]] $A \in \tau_{\leq 0} \mathbf{H} \hookrightarrow \mathbf{H}$. For all $n \in \mathbf{N}$ we have then the [[Eilenberg-MacLane object]] $\mathbf{B}^n A$. \begin{udef} For $X \in \mathbf{H}$ any object and $n \geq 1$ write \begin{displaymath} \mathbf{H}_{diff}(X,\mathbf{B}^n A) := \mathbf{H}(X,\mathbf{B}^n A) \prod_{\mathbf{H}_{dR}(X,\mathbf{B}^n A)} H_{dR}^{n+1}(X,A) \end{displaymath} for the cocycle $\infty$-groupoid of [[twisted cohomology]], def. \ref{TwistedCohomologyInOvertopos}, of $X$ with coefficients in $A$ and with twist given by the canonical \hyperlink{CurvatureCharacteristics}{curvature characteristic morphism} $curv : \mathbf{B}^n A \to \mathbf{\flat}_{dR}\mathbf{B}^{n+1} A$. This is the [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ \mathbf{H}_{diff}(X,\mathbf{B}^n A) &\stackrel{[F]}{\to}& H_{dR}^{n+1}(X,A) \\ {}^{\mathllap{\eta}}\downarrow && \downarrow \\ \mathbf{H}(X,\mathbf{B}^n A) &\stackrel{curv_*}{\to}& \mathbf{H}_{dR}(X,\mathbf{B}^{n+1} A) } \,, \end{displaymath} where the right vertical morphism $H^{n+1}_{dR}(X) = \pi_0 \mathbf{H}_{dR}(X,\mathbf{B}^{n+1}A) \to \mathbf{H}_{dR}(X,\mathbf{B}^{n+1}A)$ is any choice of cocycle representative for each cohomology class: a choice of point in every connected component. We call \begin{displaymath} H_{diff}^n(X,A) {:=} \pi_0 \mathbf{H}_{diff}(X, \mathbf{B}^{n} A) \end{displaymath} the degree-$n$ \textbf{[[differential cohomology]]} of $X$ with coefficient in $A$. For $\nabla \in \mathbf{H}_{diff}(X,\mathbf{B}^n A)$ a [[cocycle]], we call \begin{itemize}% \item $[\eta(\nabla)] \in H^n(X,A)$ the class of the \textbf{underlying $\mathbf{B}^{n-1} A$-[[principal ∞-bundle]]}; \item $F(\nabla) \in H_{dR}^{n+1}(X,A)$ the \textbf{[[curvature]]} class of $c$. \end{itemize} We also say $\nabla$ is an \textbf{$\infty$-connection} on $\eta(\nabla)$ (see \hyperlink{ChernWeilTheory}{below}). \end{udef} \begin{uprop} The differential cohomology $H_{diff}^n(X,A)$ does not depend on the choice of morphism $H_{dR}^{n+1}(X,A) \to \mathbf{H}_{dR}(X, \mathbf{B}^{n+1}A)$ (as long as it is an isomorphism on $\pi_0$, as required). In fact, for different choices the corresponding cocycle [[∞-groupoid]]s $\mathbf{H}_{diff}(X,\mathbf{B}^n A)$ are equivalent. \end{uprop} \begin{proof} The set \begin{displaymath} H_{dR}^{n+1}(X,A) = \coprod_{H_{dR}^{n+1}(X,A)} {*} \end{displaymath} is, as a 0-[[truncated]] [[∞-groupoid]], an [[(∞,1)-coproduct]] of the [[terminal object in an (∞,1)-category|terminal object]] in [[∞Grpd]]. By [[universal colimits]] in this [[(∞,1)-topos]] we have that [[(∞,1)-colimit]]s are preserved by [[(∞,1)-pullback]]s, so that $\mathbf{H}_{diff}(X, \mathbf{B}^n A)$ is the coproduct \begin{displaymath} \mathbf{H}_{diff}(X,\mathbf{B}^n A) \simeq \coprod_{H_{dR}^{n+1}(X,A)} \left( \mathbf{H}(X,\mathbf{B}^n A) \prod_{\mathbf{H}_{dR}(X,\mathbf{B}^{n+1}A)} {*} \right) \end{displaymath} of the [[homotopy fiber]]s of $curv_*$ over each of the chosen points $* \to \mathbf{H}_{dR}(X,\mathbf{B}^{n+1}A)$. These homotopy fibers only depend, up to equivalence, on the connected component over which they are taken. \end{proof} \begin{uprop} When restricted to vanishing curvature, differential cohomology coincides with \hyperlink{FlatDifferentialCohomology}{flat differential cohomology}: \begin{displaymath} H_{diff}^n (X,A)|_{[F] = 0} \simeq H_{flat}(X,\mathbf{B}^n A) \,. \end{displaymath} Moreover this is true at the level of [[cocycle]] [[∞-groupoid]]s \begin{displaymath} \left( \mathbf{H}_{diff}(X, \mathbf{B}^n A) \prod_{H_{dR}^{n+1}(X,A)} \{[F] = 0\} \right) \simeq \mathbf{H}_{flat}(X,\mathbf{B}^n A) \,. \end{displaymath} \end{uprop} \begin{proof} By the the claim is equivalently that we have a an $(\infty,1)$-pullback diagram \begin{displaymath} \itexarray{ \mathbf{H}_{flat}(X, \mathbf{B}^n A) &\to& {*} \\ \downarrow && \downarrow^{\mathrlap{\{[F] = 0\}}} \\ \mathbf{H}_{diff}(X,\mathbf{B}^n A) &\stackrel{[F]}{\to}& H_{dR}^{n+1}(X,A) \\ {}^{\mathllap{\eta}}\downarrow && \downarrow \\ \mathbf{H}(X,\mathbf{B}^n A) &\stackrel{curv_*}{\to}& \mathbf{H}_{dR}(X,\mathbf{B}^{n+1} A) } \,. \end{displaymath} By definition of flat cohomology and of intrinsic de Rham cohomology in $\mathbf{H}$, the outer rectangle is \begin{displaymath} \itexarray{ \mathbf{H}(X,\mathbf{\flat}\mathbf{B}^n A) &\to& {*} \\ \downarrow && \downarrow \\ \mathbf{H}(X, \mathbf{B}^n A) &\stackrel{curv_*}{\to}& \mathbf{H}(X, \mathbf{\flat}_{dR}\mathbf{B}^{n+1} A) } \,. \end{displaymath} Since the [[hom-functor]] $\mathbf{H}(X,-)$ preserves [[(∞,1)-limit]]s this is a pullback if \begin{displaymath} \itexarray{ \mathbf{\flat} \mathbf{B}^n A &\to& * \\ \downarrow && \downarrow \\ \mathbf{B}^n A &\stackrel{curv}{\to}& \mathbf{\flat}_{dR} \mathbf{B}^{n+1} A } \end{displaymath} is. Indeed, this is one step in the [[fiber sequence]] \begin{displaymath} \cdots \to \mathbf{\flat} \mathbf{B}^n A \to \mathbf{B}^n A \stackrel{curv}{\to} \mathbf{\flat}_{dR} \mathbf{B}^{n+1}A \to \mathbf{\flat} \mathbf{B}^{n+1} A \to \mathbf{B}^{n+1} A \end{displaymath} that \hyperlink{CurvatureCharacteristics}{defines} $curv$ (using that $\mathbf{\flat}$ preserves limits and hence looping and delooping) \end{proof} \begin{uprop} The differential cohomology group $H_{diff}^n(X,A)$ fits into a [[short exact sequence]] of [[abelian group]]s \begin{displaymath} 0 \to H_{dR}^n(X,A)/H^{n-1}(X,A) \to H_{diff}^n(X,A) \to H^n(X,A) \to 0 \,. \end{displaymath} \end{uprop} \begin{proof} This is a general statement about the definition of [[twisted cohomology]]. We claim that for all $n \geq 1$ we have a [[fiber sequence]] \begin{displaymath} \mathbf{H}(X, \mathbf{B}^{n-1}A) \to \mathbf{H}_{dR}(X, \mathbf{B}^n A) \to \mathbf{H}_{diff}(X, \mathbf{B}^n A) \to \mathbf{H}(X, \mathbf{B}^n A) \end{displaymath} in [[∞Grpd]]. This implies the [[short exact sequence]] using that by construction the last morphism is surjective on connected components (because in the defining $(\infty,1)$-pullback for $\mathbf{H}_{diff}$ the right vertical morphism is by assumption surjective on connected components). To see that we do have the fiber sequence as claimed consider the pasting composite of [[(∞,1)-pullback]]s \begin{displaymath} \itexarray{ \mathbf{H}_{dR}(X,\mathbf{B}^{n-1} A) &\to& \mathbf{H}_{diff}(X,\mathbf{B}^n A) &\to& H_{dR}(X, \mathbf{B}^{n+1} A) \\ \downarrow && \downarrow && \downarrow \\ {*} &\to& \mathbf{H}(X, \mathbf{B}^n A) &\stackrel{curv}{\to}& \mathbf{H}_{dR}(X, \mathbf{B}^{n+1} A) } \,. \end{displaymath} The square on the right is a pullback by the above definition. Since also the square on the left is assumed to be an $(\infty,1)$-pullback it follows by the that the top left object is the $(\infty,1)$-pullback of the total rectangle diagram. That total diagram is \begin{displaymath} \itexarray{ \Omega \mathbf{H}(X, \mathbf{\flat}_{dR} \mathbf{B}^{n+1}A) &\to& H(X,\mathbf{\flat}_{dR} \mathbf{B}^{n+1} A) \\ \downarrow && \downarrow \\ * &\to& \mathbf{H}(X,\mathbf{\flat}_{dR} \mathbf{B}^{n+1} A) } \,, \end{displaymath} because, as before, this $(\infty,1)$-pullback is the coproduct of the homotopy fibers, and they are empty over the connected components not in the image of the bottom morphism and are the [[loop space object]] over the single connected component that is in the image. Finally using that (as discussed at [[cohomology]] and at [[fiber sequence]]) \begin{displaymath} \Omega \mathbf{H}(X,\mathbf{\flat}_{dR} \mathbf{B}^{n+1}A) \simeq \mathbf{H}(X,\Omega \mathbf{\flat}_{dR} \mathbf{B}^{n+1}A) \end{displaymath} and \begin{displaymath} \Omega \mathbf{\flat}_{dR} \mathbf{B}^{n+1}A \simeq \mathbf{\flat}_{dR} \Omega \mathbf{B}^{n+1}A \end{displaymath} since both $\mathbf{H}(X,-)$ as well as $\mathbf{\flat}_{dR}$ preserve [[(∞,1)-limit]]s and hence formation of [[loop space object]]s, the claim follows. \end{proof} \begin{uremark} This is essentially the short exact sequence whose form is familiar from the traditional definition of [[ordinary differential cohomology]] only up to the following slight nuances in notation: \begin{enumerate}% \item The cohomology groups of the short exact sequence above denote the groups obtained in the given [[(∞,1)-topos]] $\mathbf{H}$, not in [[Top]]. Notably for $\mathbf{H} =$ [[?LieGrpd]], $A = U(1) =\mathbb{R}/\mathbb{Z}$ the [[circle group]] and $|X| \in Top$ the [[geometric realization]] of a paracompact manifold $X$, we have that $H^n(X,\mathbb{R}/\mathbb{Z})$ above is $H^{n+1}_{sing}({|\Pi X|},\mathbb{Z})$. \item The fact that on the left of the short exact sequence for differential cohomology we have the de Rham cohomology set $H_{dR}^n(X,A)$ instead of something like the set of all flat forms as familiar from [[ordinary differential cohomology]] is because the latter has no intrinsic meaning but depends on a choice of model. After fixing a specific [[presentable (∞,1)-category|presentation]] of $\mathbf{H}$ by a [[model category]] $C$ we can consider instead of $H_{dR}^{n+1}(X,A) \to \mathbf{H}_{dR}(X, \mathbf{B}^{n+1}A)$ the inclusion of the set of objects $\Omega_{cl}^{n+1}(X,A) {:=} \mathbb{R}Hom_C(X, \mathbf{B}^{n+1}A )_0 \hookrightarrow \mathbb{R}Hom_C(X, \mathbf{B}^{n+1}A )$. However, by the \hyperlink{DiffCohIsWellDefined}{above observation} this only adds multiple copies of the homotopy types of the connected components of $\mathbf{H}_{diff}(X, \mathbf{B}^n A)$. \end{enumerate} \end{uremark} \hypertarget{ChernWeilTheory}{}\subsubsection*{{Chern-Weil homomorphism and $\infty$-connections}}\label{ChernWeilTheory} Induced by the \hyperlink{DifferentialCohomology}{intrinsic differential cohomology} in any [[∞-connected (∞,1)-topos|∞-connected]] and [[locally ∞-connected (∞,1)-topos]] is an intrinsic notion of [[Chern-Weil homomorphism]]. Let $A$ be the chosen abelian [[∞-group]] as \hyperlink{DifferentialCohomology}{above}. Recall the \hyperlink{CurvatureCharacteristics}{universal curvature characteristic class} \begin{displaymath} curv : \mathbf{B}^n A \to \mathbf{\flat}_{dR}\mathbf{B}^{n+1}A \end{displaymath} for all $n \geq 1$. \begin{udef} For $G$ an [[∞-group]] and \begin{displaymath} \mathbf{c} : \mathbf{B}G \to \mathbf{B}^n A \end{displaymath} a representative of a [[characteristic class]] $[\mathbf{c}] \in H^n(\mathbf{B}G, A)$ we say that the composite \begin{displaymath} \mathbf{c}_{dR} : \mathbf{B}G \stackrel{\mathbf{c}}{\to} \mathbf{B}^n A \stackrel{curv}{\to} \mathbf{\flat}_{dR} \mathbf{B}^{n+1} A \end{displaymath} represents the corresponding [[differential characteristic class]] or \textbf{[[curvature characteristic class]]} $[\mathbf{c}_{dR}] \in H_{dR}^{n+1}(\mathbf{B}G, A)$. The induced map on cohomology \begin{displaymath} (\mathbf{c}_{dR})_* : H^1(-,G) \to H^{n+1}_{dR}(-,A) \end{displaymath} we call the (unrefined) \textbf{[[∞-Chern-Weil homomorphism]]} induced by $\mathbf{c}$. \end{udef} The following construction universally lifts the $\infty$-Chern-Weil homomorphism from taking values in \hyperlink{deRhamCohomology}{intrinsic de Rham cohomology} to values in \hyperlink{DifferentialCohomology}{intrinsic differential cohomology}. \begin{udef} For $X \in \mathbf{H}$ any object, define the [[∞-groupoid]] $\mathbf{H}_{conn}(X,\mathbf{B}G)$ as the [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ \mathbf{H}_{conn}(X, \mathbf{B}G) &\stackrel{(\hat \mathbf{c}_i)_i}{\to}& \prod_{[\mathbf{c}_i] \in H^{n_i}(\mathbf{B}G,A); i \geq 1} \mathbf{H}_{diff}(X,\mathbf{B}^{n_i} A) \\ {}^{\mathllap{\eta}}\downarrow && \downarrow \\ \mathbf{H}(X, \mathbf{B}G) &\stackrel{( \mathbf{c}_i)_i}{\to}& \prod_{[\mathbf{c}_i] \in H^{n_i}(\mathbf{B}G,A); i \geq 1} \mathbf{H}(X,\mathbf{B}^{n_i} A) } \,. \end{displaymath} We say \begin{itemize}% \item a cocycle in $\nabla \in \mathbf{H}_{conn}(X, \mathbf{B}G)$ is an [[connection on an ∞-bundle|∞-connection]] \item on the [[principal ∞-bundle]] $\eta(\nabla)$; \item a morphism in $\mathbf{H}_{conn}(X, \mathbf{B}G)$ is a [[gauge transformation]] of connections; \item for each $[\mathbf{c}] \n H^n(\mathbf{B}G, A)$ the morphism \begin{displaymath} [\hat \mathbf{c}] : H_{conn}(X,\mathbf{B}G) \to H_{diff}^n(X, A) \end{displaymath} is the (full/refined) \textbf{[[∞-Chern-Weil homomorphism]]} induced by the [[characteristic class]] $[\mathbf{c}]$. \end{itemize} \end{udef} \begin{uprop} Under the [[curvature]] projection $[F] : H_{diff}^n (X,A) \to H_{dR}^{n+1}(X,A)$ the refined Chern-Weil homomorphism for $\mathbf{c}$ projects to the unrefined Chern-Weil homomorphism. \end{uprop} \begin{proof} This is due to the existence of the pasting composite \begin{displaymath} \itexarray{ \mathbf{H}_{conn}(X, \mathbf{B}G) &\stackrel{(\hat \mathbf{c}_i)_i}{\to}& \prod_{[\mathbf{c}_i] \in H^{n_i}(\mathbf{B}G,A); i \geq 1} \mathbf{H}_{diff}(X,\mathbf{B}^{n_i} A) &\stackrel{[F]}{\to}& \prod_{[\mathbf{c}_i] \in H^{n_i}(\mathbf{B}G,A); i \geq 1} H_{dR}^{n_i+1}(X,A) \\ {}^{\mathllap{\eta}}\downarrow && \downarrow && \downarrow \\ \mathbf{H}(X, \mathbf{B}G) &\stackrel{(\mathbf{c}_i)_i}{\to}& \prod_{[\mathbf{c}_i] \in H^{n_i}(\mathbf{B}G,A); i \geq 1} \mathbf{H}(X,\mathbf{B}^{n_i} A) &\stackrel{curv_*}{\to}& \prod_{[\mathbf{c}_i] \in H^{n_i}(\mathbf{B}G,A); i \geq 1} \mathbf{H}_{dR}(X, \mathbf{B}^{n_i+1},A) } \end{displaymath} of the defining $(\infty,1)$-pullback for $\mathbf{H}_{conn}(X,\mathbf{B}G)$ with the products of the defining $(\infty,1)$-pullbacks for the $\mathbf{H}_{diff}(X, \mathbf{B}^{n_i}A)$. \end{proof} \hypertarget{ChernSimonsTheory}{}\subsubsection*{{Higher holonomy and Chern-Simons functional}}\label{ChernSimonsTheory} The notion of \hyperlink{ChernWeilTheory}{intrinsic ∞-connections} in a cohesive $(\infty,1)$-topos induces a notion of [[higher parallel transport|higher holonomy]] and [[Chern-Simons theory|Chern-Simons functionals]]. \begin{uprop} We say an object $\Sigma \in \mathbf{H}$ has \textbf{[[cohomological dimension]]} $\leq n \in \mathbb{N}$ if for all $n$-[[connected]] coefficient objects and $(n++1)$-[[truncated]] objects $\mathbf{B}^{n+1}A$ the corresponding cohomology on $\Sigma$ is trivial \begin{displaymath} H(\Sigma, \mathbf{B}^{n+1}A ) \simeq * \,. \end{displaymath} Let $dim(\Sigma)$ be the maximum $n$ for which this is true. \end{uprop} \begin{uprop} If $\Sigma$ has [[cohomological dimension]] $\leq n$ then its \hyperlink{deRhamCohomology}{intrinsic de Rham cohomology} vanishes in degree $k \gt n$ \begin{displaymath} H_{dR}^{k \gt n}(\Sigma, A) \simeq * \,. \end{displaymath} \end{uprop} \begin{proof} Since $\mathbf{\flat}$ is a [[right adjoint]] it preserves [[delooping]] and hence $\mathbf{\flat} \mathbf{B}^k A \simeq \mathbf{B}^k \mathbf{\flat}A$. It follows that \begin{displaymath} \begin{aligned} H_{dR}^{k}(\Sigma,A) & := \pi_0 \mathbf{H}(\Sigma, \mathbf{\flat}_{dR} \mathbf{B}^k A) \\ & \simeq \pi_0 \mathbf{H}(\Sigma, * \prod_{\mathbf{B}^k A} \mathbf{B}^k \mathbf{\flat}A) \\ & \simeq \pi_0 \left( \mathbf{H}(\Sigma,*) \prod_{\mathbf{H}(\Sigma, \mathbf{B}^k A)} \mathbf{H}(\Sigma, \mathbf{B}^k \mathbf{\flat}A) \right) \\ & \simeq \pi_0 (*) \end{aligned} \,. \end{displaymath} \end{proof} Let now again $A$ be fixed as \hyperlink{DifferentialCohomology}{above}. \begin{udef} Let $\Sigma \in \mathbf{H}$, $n \in \mathbf{N}$ with $dim \Sigma \leq n$. We say that the composite \begin{displaymath} \int_\Sigma : \mathbf{H}_{flat}(\Sigma, \mathbf{B}^n A) \stackrel{\simeq}{\to} \infty Gprd(\Pi(\Sigma), \Pi(\mathbf{B}^n A)) \stackrel{\tau_{\leq n-dim(\Sigma)}}{\to} \tau_{n-dim(\Sigma)} \infty Gprd(\Pi(\Sigma), \Pi(\mathbf{B}^n A)) \end{displaymath} of the [[adjunction]] equivalence followed by [[truncated|truncation]] is the \textbf{flat holonomy} operation on flat $\infty$-connections. More generally, let \begin{itemize}% \item $\nabla \in \mathbf{H}_{diff}(X, \mathbf{B}^n A)$ be a differential coycle on some $X \in \mathbf{H}$ \item $\phi : \Sigma \to X$ a morphism. \end{itemize} Write \begin{displaymath} \phi^* : \mathbf{H}_{diff}(X, \mathbf{B}^{n+1} A) \to \mathbf{H}_{diff}(\Sigma, \mathbf{B}^n A) \simeq \mathbf{H}_{flat}(\Sigma, \mathbf{B}^n A) \end{displaymath} (using the \hyperlink{DiffCohomologyRestrictedToVanishingCurvature}{above proposition}) for the morphism on $(\infty,1)$-pullbacks induced by the morphism of diagrams \begin{displaymath} \itexarray{ \mathbf{H}(X, \mathbf{B}^n A) &\to& \mathbf{H}_{dR}(X, \mathbf{B}^{n+1} A) &\leftarrow& H_{dR}^{n+1}(X, A) \\ \downarrow^{\mathrlap{\phi^*}} && \downarrow^{\mathrlap{\phi^*}} && \downarrow \\ \mathbf{H}(\Sigma, \mathbf{B}^n A) &\to& \mathbf{H}_{dR}(X, \mathbf{B}^{n+1} A) &\leftarrow& * } \end{displaymath} The \textbf{[[higher parallel transport|holonomomy]]} of $\nabla$ over $\sigma$ is the flat holonomy of $\phi^* \nabla$ \begin{displaymath} \int_\phi \nabla := \int_{\Sigma} \phi^* \nabla \,. \end{displaymath} \end{udef} \begin{udef} Let $\Sigma \in \mathbf{H}$ be of [[cohomological dimension]] $dim\Sigma = n \in \mathbb{N}$ and let $\mathbf{c} : X \to \mathbf{B}^n A$ a representative of a [[characteristic class]] $[\mathbf{c}] \in H^n(X, A)$ for some object $X$. We say that the composite \begin{displaymath} \exp(S_{\mathbf{c}}(-)) : \mathbf{H}(\Sigma, X) \stackrel{\hat \mathbf{c}}{\to} \mathbf{H}_{diff}(\Sigma, \mathbf{B}^n A) \stackrel{\simeq}{\to} \mathbf{H}_{flat}(\Sigma, \mathbf{B}^n A) \stackrel{\int_\Sigma}{\to} \tau_{\leq 0} \infty Grpd(\Pi(\Sigma), \Pi \mathbf{B}^n A) \end{displaymath} where $\hat \mathbf{c}$ denotes the \hyperlink{ChernWeilTheory}{refined Chern-Weil homomorphism} induced by $\mathbf{c}$, is the \textbf{[[schreiber:∞-Chern-Simons theory|extended Chern-Simons functional]]} induced by $\mathbf{c}$ on $\Sigma$. \end{udef} \begin{udef} In the language of [[sigma-model]] [[quantum field theory]] the ingredients of this definition have the following interpretation \begin{itemize}% \item $\Sigma$ is the \emph{worldvolume of a fundamental $(dim\Sigma-1)$-[[brane]]} ; \item $X$ is the target space; \item $\hat \mathbf{c}$ is the background [[gauge field]] on $X$; \item $\mathbf{H}_{conn}(\Sigma,X)$ is the space of \emph{worldvolume field configurations} $\phi : \Sigma \to X$ or \emph{trajectories} of the brane in $X$; \item $\exp(S_{\mathbf{c}}(\phi)) = \int_\Sigma \phi^* \hat \mathbf{c}$ is the value of the [[action functional]] on the field configuration $\phi$. \end{itemize} \end{udef} In suitable situations this construction refines to an internal construction. Assume that $\mathbf{H}$ has a canonical [[line object]] $\mathbb{A}^1$ and a [[natural numbers object]] $\mathbb{Z}$. Then the [[action functional]] $\exp(i S(-))$ may lift to the [[internal hom]] with respect to the canonical on any [[(∞,1)-topos]] to a morphism of the form \begin{displaymath} \exp(i S_{\mathbf{c}}(-)) : [\Sigma,\mathbf{B}G_{conn}] \to \mathbf{B}^{n-dim \Sigma}\mathbb{A}^1/\mathbb{Z} \,. \end{displaymath} We call $[\Sigma, \mathbf{B}G_{conn}]$ the [[configuration space]] of the [[schreiber:∞-Chern-Simons theory]] defined by $\mathbf{c}$ and $\exp(i S_\mathbf{c}(-))$ the [[action functional]] in [[codimension]] $(n-dim\Sigma)$ defined on it. See [[schreiber:∞-Chern-Simons theory]] for more discussion. \hypertarget{references}{}\subsection*{{References}}\label{references} The [[category theory|category-theoretic]] definition of [[cohesive topos]] was proposed by [[Bill Lawvere]]. See the references at [[cohesive topos]]. The observation that the further left adjoint $\Pi$ in a [[locally ∞-connected (∞,1)-topos]] defines an intrinsic notion of paths and [[geometric homotopy groups in an (∞,1)-topos]] was suggested by [[Richard Williamson]]. The observation that the further right adjoint $coDisc$ in a [[local (∞,1)-topos]] serves to characterize [[concrete sheaf|concrete (∞,1)-sheaves]] was amplified by [[David Carchedi]]. Several aspects of the discussion here are, more or less explicitly, in \begin{itemize}% \item [[Carlos Simpson]], [[Constantin Teleman]], \emph{deRham theorem for $\infty$-stacks} (\href{http://math.berkeley.edu/~teleman/math/simpson.pdf}{pdf}) \end{itemize} For instance something similar to the notion of [[infinity-connected (infinity,1)-site|∞-connected site]] and the [[fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos]] is the content of section 2.16. The \hyperlink{LieTheory}{infinitesimal path ∞-groupoid adjunction} $(\mathbf{Red} \dashv \mathbf{\Pi}_{inf} \dashv \mathbf{\flat}_{inf})$ is essentially discussed in section 3. The notion of geometric realization, \ref{GeometricRealization}, is touched on around remark 2.22, referring to \begin{itemize}% \item [[Carlos Simpson]], \emph{The topological realization of a simplicial presheaf} , \href{http://arxiv.org/abs/q-alg/9609004}{arXiv:q-alg/9609004}. \end{itemize} But, more or less explicitly, the presentation of geometric realization of simplicial presheaves is much older, going back to Artin-Mazur. See [[geometric homotopy groups in an (∞,1)-topos]] for a detailed commented list of literature. A characterization of infinitesimal extensions and formal smoothness by adjoint functors (discussed at [[infinitesimal cohesion]]) is considered in \begin{itemize}% \item [[Maxim Kontsevich]], [[Alexander Rosenberg]], \emph{Noncommutative spaces}, preprint MPI-2004-35 (\href{http://www.mpim-bonn.mpg.de/preprints/send?bid=2331}{ps}, \href{http://www.mpim-bonn.mpg.de/preprints/send?bid=2303}{dvi}) \end{itemize} in the context of \emph{[[Q-categories]]} . The material presented here is also in section 2 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} A commented list of further related references is at \begin{itemize}% \item [[schreiber:differential cohomology in an (∞,1)-topos -- references |differential cohomology in a cohesive topos -- references]] \end{itemize} \end{document}