\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cohesive site} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohesive_toposes}{}\paragraph*{{Cohesive $\infty$-Toposes}}\label{cohesive_toposes} [[!include cohesive infinity-toposes - contents]] \hypertarget{cohesive_site}{}\section*{{Cohesive site}}\label{cohesive_site} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{sheaves_on_a_cohesive_site_are_cohesive}{Sheaves on a cohesive site are cohesive}\dotfill \pageref*{sheaves_on_a_cohesive_site_are_cohesive} \linebreak \noindent\hyperlink{aufhebung}{Aufhebung}\dotfill \pageref*{aufhebung} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{cohesive_presheaf_sites}{Cohesive presheaf sites}\dotfill \pageref*{cohesive_presheaf_sites} \linebreak \noindent\hyperlink{sites_of_open_balls}{Sites of open balls}\dotfill \pageref*{sites_of_open_balls} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{cohesive site} is a small [[site]] whose [[topos of sheaves]] is a [[cohesive topos]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} Let $C$ be a [[small site|small]] [[site]], i.e. a [[small category]] equipped with a [[coverage]]/[[Grothendieck topology]]. We say that $C$ is a \textbf{cohesive site} if \begin{enumerate}% \item $C$ has a [[terminal object]]. \item The coverage on $C$ makes it a [[locally connected site]], i.e. every [[cover|covering]] [[sieve]] on an object $U\in C$ is [[connected category|connected]] as a [[subcategory]] of the [[slice category]] $C/U$. \item Every object $U\in C$ admits a [[global section]] $*\to U$. \item $C$ is a [[cosifted category]] (for instance in that it has all [[finite products]], see at \emph{[[categories with finite products are cosifted]]}). \end{enumerate} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{sheaves_on_a_cohesive_site_are_cohesive}{}\subsubsection*{{Sheaves on a cohesive site are cohesive}}\label{sheaves_on_a_cohesive_site_are_cohesive} \begin{prop} \label{}\hypertarget{}{} For $C$ a cohesive site, the [[category of sheaves]] $Sh(C)$ on $C$ is a [[cohesive topos]] over [[Set]] for which \emph{[[pieces have points]]} . \end{prop} \begin{proof} Following the notation at [[cohesive topos]], we write \begin{displaymath} (Disc \dashv \Gamma) \coloneqq (L Const \dashv \Gamma) \;\colon\; Sh(C) \to Set \end{displaymath} for the [[global section]] [[geometric morphism]], where the [[inverse image]] $Disc$ constructs [[discrete object]]s. We need to exhibit two more adjoints \begin{displaymath} (\Pi_0 \dashv Disc \dashv \Gamma \dashv CoDisc) \;\colon\; Sh(C) \to Set \end{displaymath} and show that $\Pi_0$ preserves [[finite products]]. Finally we need to show that $\Gamma X \to \Pi_0 X$ is an [[epimorphism]] for all $X$. Firstly, since $C$ is a [[locally connected site]], any constant presheaf is a sheaf. This implies that the functor $Disc$ has a further [[left adjoint]] given by taking [[colimits]] over $C^{op}$, which we denote $\Pi_0$. Hence $Sh(C)$ is a [[locally connected topos]]. Moreover, since $C$ is [[cosifted category|cosifted]], $\Pi_0$ preserves finite products. In particular, $Sh(C)$ is [[connected topos|connected]] and even \emph{strongly connected}. Next, we claim that $C$ is a [[local site]]. This means that its [[terminal object]] $*$ is \emph{cover-irreducible}, i.e. any covering [[sieve]] of $*$ must contain its identity map. But since $C$ is a locally connected site, every covering family is inhabited, and since every object has a global section, every covering sieve must include a global section. In the case of $*$, the only global section is an identity map; hence $C$ is a local site, and so $Sh(C)$ is a [[local topos]]. The [[right adjoint]] $Codisc$ of $\Gamma$ is defined by \begin{displaymath} CoDisc(A)(U) = A^{C(*,U)} = A^{\Gamma(U)} \,. \end{displaymath} We now claim that the transformation $Disc(A) \to Codisc(A)$ is [[monic]]. Since sheaves are closed under limits in presheaves, this condition can be checked pointwise at each object $U\in C$. But since constant presheaves are sheaves, the map $Disc(A)(U) \to Codisc(A)(U)$ is just the [[diagonal morphism|diagonal]] \begin{displaymath} A \to A^{C(*,U)} \end{displaymath} which is monic since $C(*,U)$ is always inhabited (by assumption on $C$). \end{proof} \hypertarget{aufhebung}{}\subsubsection*{{Aufhebung}}\label{aufhebung} A [[cohesive topos]] over a cohesive site satisfies [[Aufhebung]] of the [[unity of opposites|moments]] of [[becoming]]. See at \emph{[[Aufhebung]]} the section \emph{\href{http://ncatlab.org/nlab/show/Aufhebung#ExamplesBecomingFormalization}{Aufhebung of becoming -- Over cohesive sites}} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{cohesive_presheaf_sites}{}\subsubsection*{{Cohesive presheaf sites}}\label{cohesive_presheaf_sites} Consider a category $C$ equipped with the trivial coverage/topology. Then the [[category of sheaves]] on $C$ is the [[category of presheaves]] on $C$ \begin{displaymath} Sh(C) \simeq PSh(C) \end{displaymath} and trivially every constant presheaf is a sheaf. So we always have an [[adjoint triple]] of functors \begin{displaymath} (\Pi_0 \dashv Disc \dashv \Gamma) : Sh(C) \to Set \,, \end{displaymath} where \begin{itemize}% \item $\Pi_0$ is the functor that takes [[colimit]]s of functors $X : C^{op} \to Set$ \begin{displaymath} \Pi_0 X = {\lim_\to} X \end{displaymath} \item $\Gamma$ is the functor that takes [[limit]]s; \begin{displaymath} \Gamma X = {\lim_\leftarrow} X \,. \end{displaymath} \end{itemize} The condition that $\Pi_0$ preserves finite products is precisely the condition that $C$ be a [[cosifted category]]. In conclusion we have \begin{prop} \label{}\hypertarget{}{} A small category equipped with the trivial coverage/topology is a cohesive site if \begin{itemize}% \item it is [[cosifted category|cosifted]]; \item has a [[terminal object]] $*$. \item every object $U$ has a [[global element]] $* \to U$. \end{itemize} The first two conditions ensure that $Sh(C) = PSh(C)$ is a [[cohesive topos]]. The last condition implies that \emph{cohesive pieces have points} in $PSh(C)$. \end{prop} \hypertarget{sites_of_open_balls}{}\subsubsection*{{Sites of open balls}}\label{sites_of_open_balls} Any full small subcategory of [[Top]] on [[connected]] topological spaces with the canonical induced [[open cover]] [[coverage]] is a cohesive site. If a subcategory on [[contractible]] spaces, then this is also an [[(∞,1)-cohesive site]]. Specifically we have: \begin{prop} \label{}\hypertarget{}{} The categories [[CartSp]] and [[ThCartSp]] equipped with the standard [[open cover]] [[coverage]] are cohesive sites. \end{prop} The axioms are readily checked. Notice that the cohesive topos over $ThCartSp$ is the [[Cahiers topos]]. \begin{prop} \label{}\hypertarget{}{} The cohesive concrete objects of the cohesive topos $Sh(CartSp)$ are precisely the [[diffeological space]]s. \end{prop} See [[cohesive topos]] for more on this. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[locally connected topos]] / [[locally ∞-connected (∞,1)-topos]] \begin{itemize}% \item [[connected topos]] / [[∞-connected (∞,1)-topos]] \item [[strongly connected topos]] / [[strongly ∞-connected (∞,1)-topos]] \item [[totally connected topos]] / [[totally ∞-connected (∞,1)-topos]] \end{itemize} \item [[local topos]] / [[local (∞,1)-topos]]. \item [[cohesive topos]] / [[cohesive (∞,1)-topos]] \end{itemize} and \begin{itemize}% \item [[locally connected site]] / [[locally ∞-connected site]] \begin{itemize}% \item [[connected site]] / [[∞-connected site]] \item [[strongly connected site]] / [[strongly ∞-connected site]] \item [[totally connected site]] / [[totally ∞-connected site]] \end{itemize} \item [[local site]] / [[∞-local site]] \item \textbf{cohesive site} / [[∞-cohesive site]] \end{itemize} [[!redirects cohesive sites]] [[!redirects site of cohesion]] [[!redirects sites of cohesion]] \end{document}