\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cohomotopy} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{AsTheAbsoluteCohomologyTheory}{As the absolute cohomology theory}\dotfill \pageref*{AsTheAbsoluteCohomologyTheory} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{hopf_degree_theorem}{Hopf degree theorem}\dotfill \pageref*{hopf_degree_theorem} \linebreak \noindent\hyperlink{poincarhopf_theorem}{Poincaré–Hopf theorem}\dotfill \pageref*{poincarhopf_theorem} \linebreak \noindent\hyperlink{relation_to_freudenthal_suspension_theorem}{Relation to Freudenthal suspension theorem}\dotfill \pageref*{relation_to_freudenthal_suspension_theorem} \linebreak \noindent\hyperlink{smooth_representatives}{Smooth representatives}\dotfill \pageref*{smooth_representatives} \linebreak \noindent\hyperlink{RelationToCobordismGroup}{PT-Construction and normally framed submanifolds}\dotfill \pageref*{RelationToCobordismGroup} \linebreak \noindent\hyperlink{RelationToConfigurationSpaces}{Cohomotopy charge map and Relation to configuration spaces}\dotfill \pageref*{RelationToConfigurationSpaces} \linebreak \noindent\hyperlink{complexrational_cohomotopy_and_moduli_space_of_yang0mills_monopoles}{Complex-rational Cohomotopy and moduli space of Yang-0Mills monopoles}\dotfill \pageref*{complexrational_cohomotopy_and_moduli_space_of_yang0mills_monopoles} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{On4Manifolds}{Of 4-Manifolds}\dotfill \pageref*{On4Manifolds} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general_2}{General}\dotfill \pageref*{general_2} \linebreak \noindent\hyperlink{cohomotopy_cocycle_spaces}{Cohomotopy cocycle spaces}\dotfill \pageref*{cohomotopy_cocycle_spaces} \linebreak \noindent\hyperlink{relation_to_knots_and_links}{Relation to knots and links}\dotfill \pageref*{relation_to_knots_and_links} \linebreak \noindent\hyperlink{application_to_persistency}{Application to persistency}\dotfill \pageref*{application_to_persistency} \linebreak \noindent\hyperlink{equivariant_cohomotopy}{Equivariant Cohomotopy}\dotfill \pageref*{equivariant_cohomotopy} \linebreak \noindent\hyperlink{in_spectral_geometry}{In spectral geometry}\dotfill \pageref*{in_spectral_geometry} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \emph{Cohomotopy cohomology theory} $\pi^\bullet$ is the ([[non-abelian cohomology|non-abelian]]) [[generalized cohomology theory]] whose [[cocycle spaces]] are [[spaces of maps]] into an [[n-sphere]], hence whose [[cohomology classes]] are [[homotopy classes]] of [[maps]] into an [[n-sphere]]: \begin{displaymath} \pi^n(X) \;\coloneqq\; Maps\big( X, S^n\big)/_{\sim_{homotopy}} \end{displaymath} So, dually to how [[homotopy groups]] \begin{displaymath} \pi_n(X)\coloneqq Maps\big( S^n, X\big)/_{\sim_{homotopy}} \end{displaymath} are [[groups]] of [[homotopy classes]] of maps \emph{out} of [[spheres]], Cohomotopy sets are sets of homotopy classes of maps \emph{into} spheres, whence the [[duality|dual]] name. If instead one considers only the [[stable homotopy theory|stable]] aspect of Cohomotopy sets, by mapping into the [[stabilization]] of the spheres, hence into (some [[suspension spectrum|suspension]] of) the [[sphere spectrum]], then one speaks of \emph{[[stable Cohomotopy]]}, written \begin{displaymath} \mathbb{S}^n(X) \;\coloneqq\; Maps \big( \Sigma^\infty X , \Sigma^{\infty} S^n \big)/_{\sim_{homotopy}} \,. \end{displaymath} In other words, the [[generalized (Eilenberg-Steenrod) cohomology]] theory which is [[Brown representability theorem|represented]] by the [[sphere spectrum]] is \emph{[[stable Cohomotopy]]}. \begin{remark} \label{RemarkOnTerminology}\hypertarget{RemarkOnTerminology}{} \textbf{(terminology)} Therefore ``Cohomotopy theory'' is really shorthand for ``Cohomotopy cohomology theory'' and as such is [[duality|dual]] to \emph{homotopy homology theory}, which in the stable case is known as \emph{[[stable homotopy homology theory]]}. In particular, cohomotopy theory is a [[concrete particular]] and not dual to the [[abstract general]] of [[homotopy theory]]; and is hence also not on par with the [[abstract general]] of [[cohomology theory]]. Rather, Cohomotopy theory is one \emph{instance} of a [[generalized cohomology|cohomologyy theory]], and as such is a sibling of [[ordinary cohomology theory]] ([[HR]]-theory)), [[K-theory]], etc. To emphasize this, one might, in the [[stable cohomotopy theory|stable case]], say \emph{$\mathbb{S}$-theory} instead of ``stable Cohomotopy theory''; where $\mathbb{S}$ denotes the [[sphere spectrum]]. In the unstable case there is no widely adopted notation, but one might consider saying ``$\mathbf{\pi}$-theory'' (with $\pi$ the established symbol for (co)[[homotopy groups]]) or \emph{$S$-theory} (with ``$S$'' for [[n-spheres]] $S^n$) for unstable Cohomotopy theory. In any case, to highlight that Cohomotopy theory is a [[concrete particular]] and not an [[abstract general]], it makes good sense to capitalize the term and speak of \emph{Cohomotopy cohomology theory} or just \emph{Cohomotopy theory}, for short. The following table indicates the pattern: \newline | [[ordinary cohomology]]: [[HR]]-[[generalized (Eilenberg-Steenrod) cohomology theory|cohomology theory]] | [[ordinary homology]]: [[HR]]-[[generalized homology theory|homology theory]] | [[Eilenberg-MacLane space]] $K(R,n)$ | [[Eilenberg-MacLane spectrum]] $H R$ | | [[topological K-theory|K-cohomology theory]] | [[K-homology theory]] | [[stable unitary group]] [[stable unitary group|BU]] | [[K-theory spectrum]] [[KU]], \ldots{} | \end{remark} As for any [[generalized cohomology theory]] there are immediate variants to plain Cohomotopy theory, as shown in the following table: [[!include flavours of cohomotopy -- table]] \hypertarget{AsTheAbsoluteCohomologyTheory}{}\subsubsection*{{As the absolute cohomology theory}}\label{AsTheAbsoluteCohomologyTheory} In some sense Cohomotopy is the most fundamental of all [[generalized cohomology theories]] (``[[The Music of the Spheres]]''). Concretely, [[stable Cohomotopy cohomology theory]] is the [[initial object]] among [[multiplicative cohomology theories]], in that the [[sphere spectrum]] is the [[initial object in an (infinity,1)-category|initial object]] in ([[E-infinity ring|E-infinity]]) [[ring spectra]]. This means that for any other [[multiplicative cohomology theory|multiplicative]] [[generalized (Eilenberg-Steenrod) cohomology theory|cohomology theory]] $E$ there is an essentially unique multiplicative [[natural transformation]] \begin{equation} \mathbb{S}^\bullet(X) \overset{\beta(X)}{\longrightarrow} E^\bullet(X) \label{BoardmanHomomorphism}\end{equation} from Cohomotopy cohomology groups to $E$-cohomology groups -- the \emph{[[Boardman homomorphism]]}. Specifically for $E = K \mathbb{F}$ the [[algebraic K-theory]] of a [[field]] $\mathbb{F}$ (such as a [[prime field]] $\mathbb{F}_p$) there is such a comparison morphism; and another way how stable Cohomotopy is the most fundamental of all K-theories is that it is equivalently the [[algebraic K-theory]] over the ``absolute base'', namely over the ``[[field with one element]]'' $\mathbb{F}_1$ (see \href{stable+cohomotopy#AsAlgebraicKTheoryOverTheFieldWithOneElement}{there} for more): \begin{displaymath} \mathbb{S}^\bullet(X) \;\simeq\; K\mathbb{F}_1 ^ \bullet(X) \,. \end{displaymath} For example, for $E =$ [[KU]] and in the case of $G$-[[equivariant cohomology theory]] ([[equivariant Cohomotopy theory]] and [[equivariant K-theory]]) the [[Boardman homomorphism]] \eqref{BoardmanHomomorphism} gives the comparison map \begin{displaymath} \mathbb{S}^0_G(\ast) \simeq R_{\mathbb{F}_1}(G) \simeq A(G) \overset{\mathbb{C}[-]}{\longrightarrow} R_{\mathbb{C}}(G) \simeq KU^0_G(\ast) \end{displaymath} from the [[Burnside ring]] to the [[representation ring]] of the [[finite group]] $G$, by forming [[permutation representations]]; where we may think of the [[Burnside ring]] as being the [[representation ring]] over the ``[[field with one element]]'' (see e.g. \href{field+with+one+element#ChuLorscheidSanthanam10}{Chu-Lorscheid-Santhanam 10}), as indicated above. So far, this applies to [[stable Cohomotopy theory]], which historically has received almost all the attention. But, while [[stabilization]] makes the immensely rich nature of [[homotopy theory]] a tad more tractable, it is only an approximation (just the first [[Goodwillie calculus|Goodwillie derivative]]!) of full unstable/[[non-abelian cohomology]]. Hence the one concept more fundamental than stable Cohomotopy theory is actual Cohomotopy theory. For example, the classification of [[Yang-Mills instantons]] on $\mathbb{R}^4$ is typically regarded in the [[non-abelian cohomology]] theory represented by the [[classifying space]] $B SU(N)$ of the [[special unitary group]] (for $N \geq 2$, starting with [[SU(2)]]) \begin{displaymath} (B SU(N))^0 \Big( \big( \mathbb{R}^{4} \big)^{cpt} \Big) \;\coloneqq\; \Big\{ \big( \mathbb{R}^{4} \big)^{cpt} \to B SU(N) \Big\}/_{\sim_{homotopy}} \;\simeq\; \underset{ \mathclap{ \color{blue} {\text{instanton} \atop \text{number}} } }{ \mathbb{Z} } \,. \end{displaymath} But since the [[one-point compactification]] of 4d [[Euclidean space]] is the [[4-sphere]] $\big( \mathbb{R}^4\big)^{cpt} \simeq S^4$, this classification factors through one in unstable Cohomotopy theory, via the ``unstable Boardman homomorphism'' $S^4 \longrightarrow B SU(N)$ representing the generator of the 4th [[homotopy group]] of $B SU(N)$ (see \href{unitary+group#HomotopyGroups}{there}) \begin{displaymath} \pi^0 \Big( \big( \mathbb{R}^{4} \big)^{cpt} \Big) \;\coloneqq\; \Big\{ \big( \mathbb{R}^{4} \big)^{cpt} \to S^4 \Big\}/_{\sim_{homotopy}} \;\simeq\; \underset{ \mathclap{ \color{blue} {\text{instanton} \atop \text{number}} } }{ \mathbb{Z} } \,. \end{displaymath} (see \hyperlink{SatiSchreiber19}{SS 19, p. 9-10}) This is the tip of an iceberg. Which needs to be discussed elsewhere. $\backslash$linebreak \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{hopf_degree_theorem}{}\subsubsection*{{Hopf degree theorem}}\label{hopf_degree_theorem} \begin{prop} \label{}\hypertarget{}{} \textbf{([[Hopf degree theorem]])} Let $n \in \mathbb{N}$ be a [[natural number]] and $X \in Mfd$ be a [[connected topological space|connected]] [[orientation|orientable]] [[closed manifold]] of [[dimension]] $n$. Then the $n$th [[cohomotopy]] classes $\left[X \overset{c}{\to} S^n\right] \in \pi^n(X)$ of $X$ are in [[bijection]] to the [[degree of a continuous function|degree]] $deg(c) \in \mathbb{Z}$ of the representing functions, hence the canonical function \begin{displaymath} \pi^n(X) \underoverset{\simeq}{S^n \to K(\mathbb{Z},n)}{\longrightarrow} H^n(X,\mathbb{Z}) \;\simeq\; \mathbb{Z} \end{displaymath} from $n$th [[cohomotopy]] to $n$th [[integral cohomology]] is a [[bijection]]. \end{prop} (e.g. \hyperlink{Kosinski93}{Kosinski 93, IX (5.8)}) \hypertarget{poincarhopf_theorem}{}\subsubsection*{{Poincaré–Hopf theorem}}\label{poincarhopf_theorem} \begin{itemize}% \item [[Poincaré–Hopf theorem]] \end{itemize} \hypertarget{relation_to_freudenthal_suspension_theorem}{}\subsubsection*{{Relation to Freudenthal suspension theorem}}\label{relation_to_freudenthal_suspension_theorem} relation to the [[Freudenthal suspension theorem]] (\hyperlink{Spanier49}{Spanier 49, section 9}) \hypertarget{smooth_representatives}{}\subsubsection*{{Smooth representatives}}\label{smooth_representatives} For $X$ a [[compact topological space|compact]] [[smooth manifold]], there is a [[smooth function]] $X \to S^n$ representing every cohomotopy class (with respect to the standard [[smooth structure]] on the [[sphere]] [[manifold]]). \hypertarget{RelationToCobordismGroup}{}\subsubsection*{{PT-Construction and normally framed submanifolds}}\label{RelationToCobordismGroup} For $X$ a [[closed manifold|closed]] [[smooth manifold]] of [[dimension]] $D$, the assignment of [[Cohomotopy charge]] ([[Pontryagin-Thom construction]], e.g. \hyperlink{Kosinski93}{Kosinski 93, IX.5}) identifies the [[set]] \begin{displaymath} SubMfd_{/bord}^{d}(X) \end{displaymath} of [[cobordism classes]] of [[closed manifold|closed]] and [[normally framed submanifolds]] $\Sigma \overset{\iota}{\hookrightarrow} X$ of [[dimension]] $d$ inside $X$ with the [[cohomotopy]] $\pi^{D-d}(X)$ of $X$ in degree $D- d$ \begin{displaymath} SubMfd_{/bord}^{d}(X) \underoverset{\simeq}{\;\;\;PT\;\;\;}{\longrightarrow} \pi^{D-d}(X) \,. \end{displaymath} (e.g. \hyperlink{Kosinski93}{Kosinski 93, IX Theorem (5.5)}) In particular, by this [[bijection]] the canonical [[group]] [[structure]] on [[cobordism groups]] in sufficiently high [[codimension]] (essentially given by [[disjoint union]] of [[submanifolds]]) this way induces a group structure on the cohomotopy sets in sufficiently high degree. $\,$ \begin{quote}% graphics grabbed form \hyperlink{SatiSchreiber19}{Sati-Schreiber 19} \end{quote} Here the [[normal framing]] of the submanifolds plays the role of the [[charge]] in [[Cohomotopy]] which they carry: $\,$ \begin{quote}% graphics grabbed form \hyperlink{SatiSchreiber19}{Sati-Schreiber 19} \end{quote} For example: $\,$ \begin{quote}% graphics grabbed form \hyperlink{SatiSchreiber19}{Sati-Schreiber 19} \end{quote} This construction generalizes to [[equivariant cohomotopy]], see \href{equivariant+cohomotopy#PontryaginThomConstruction}{there}. With the [[equivariant Hopf degree theorem]] the above example has the following $\mathbb{Z}_2$-[[equivariant homotopy theory|equivariant]] version (see \href{equivariant+Hopf+degree+theorem#EquivariantCohomotopyOfRepresentationSpheres}{there}): $\,$ \begin{quote}% graphics grabbed form \hyperlink{SatiSchreiber19}{Sati-Schreiber 19} \end{quote} Further by the [[equivariant Hopf degree theorem]] (see \href{equivariant+Hopf+degree+theorem#EquivariantCohomotopyOfRepresentationTori}{there}), this example generalizes to [[equivariant cohomotopy]] of [[toroidal orbifold|toroidal]] [[orientifolds]]: $\,$ \begin{quote}% graphics grabbed form \hyperlink{SatiSchreiber19}{Sati-Schreiber 19} \end{quote} $\backslash$linebreak \hypertarget{RelationToConfigurationSpaces}{}\subsubsection*{{Cohomotopy charge map and Relation to configuration spaces}}\label{RelationToConfigurationSpaces} The \emph{[[Cohomotopy charge map]]} is the [[function]] that assigns to a [[configuration space of points|configuration of points]] their total [[charge]] as measured in [[Cohomotopy]]-[[generalized cohomology|cohomology theory]]. This is alternatively known as the ``electric field map'' (\href{Cohomotopy+charge#Salvatore01}{Salvatore 01} following \href{Cohomotopy+charge#Segal73}{Segal 73, Section 1}, see also \href{Cohomotopy+charge#Knudsen18}{Knudsen 18, p. 49}) or the ``scanning map'' (\href{Cohomotopy+charge#Kallel98}{Kallel 98}). For $D \in \mathbb{N}$ the \emph{Cohomotopy charge map} is the [[continuous function]] \begin{equation} Conf\big( \mathbb{R}^D \big) \overset{cc}{\longrightarrow} \mathbf{\pi}^D \Big( \big( \mathbb{R}^D \big)^{cpt} \Big) = Maps^{\ast/\!}\Big( \big(\mathbb{R}^D\big)^{cpt} , S^D\big) = \Omega^{D} S^D \label{CohomotopyChargeMapOnEuclideanSpace}\end{equation} from the [[configuration space of points]] in the [[Euclidean space]] $\mathbb{R}^D$ to the $D$-[[Cohomotopy]] [[cocycle space]] [[vanishing at infinity]] on the [[Euclidean space]](which is equivalently the [[space of maps|space of pointed maps]] from the [[one-point compactification]] $S^D \simeq \big( \mathbb{R}^D \big)$ to itself, and hence equivalently the $D$-fold [[iterated based loop space]] of the [[n-sphere|D-sphere]]), which sends a configuration of points in $\mathbb{R}^D$, each regarded as carrying unit [[charge]] to their total [[charge]] as measured in [[Cohomotopy]]-[[generalized cohomology|cohomology theory]] (\href{Cohomotopy+charge#Segal73}{Segal 73, Section 3}). This has evident generalizations to other manifolds than just Euclidean spaces, to spaces of labeleed configurations and to [[equivariant Cohomotopy]]. The following graphics illustrates the Cohomotopy charge map on [[G-space]] [[tori]] for $G = \mathbb{Z}_2$ with values in $\mathbb{Z}_2$-[[equivariant Cohomotopy]]: \begin{quote}% graphics grabbed from \hyperlink{SatiSchreiber19}{SS 19} \end{quote} In some situations the [[Cohomotopy charge map]] is a [[weak homotopy equivalence]] and hence exhibits, for all purposes of [[homotopy theory]], the [[Cohomotopy]] [[cocycle space]] of Cohomotopy charges as an equivalent reflection of the [[configuration space of points]]. \begin{prop} \label{GroupCompletionOfConfigurationSpaceIsIteratedBasedLoopSpace}\hypertarget{GroupCompletionOfConfigurationSpaceIsIteratedBasedLoopSpace}{} \textbf{([[group completion]] on [[configuration space of points]] is [[iterated based loop space]])} The [[Cohomotopy charge map]] \eqref{CohomotopyChargeMapOnEuclideanSpace} \begin{displaymath} Conf \big( \mathbb{R}^D \big) \overset{ cc }{\longrightarrow} \Omega^D S^D \end{displaymath} from the full unordered and unlabeled configuration space (\href{configuration+space+of+points#eq:UnorderedUnlabeledConfigurationSpace}{here}) of [[Euclidean space]] $\mathbb{R}^D$ to the $D$-fold [[iterated based loop space]] of the [[n-sphere|D-sphere]], exhibits the [[group completion]] (\href{configuration+space+of+points#eq:GroupCompletionOfConfigurationSpaceMonoid}{here}) of the configuration space monoid \begin{displaymath} \Omega B_{{}_{\sqcup}\!} Conf \big( \mathbb{R}^D \big) \overset{ \simeq }{\longrightarrow} \Omega^D S^D \end{displaymath} \end{prop} (\href{Cohomotopy+charge#Segal73}{Segal 73, Theorem 1}) \begin{prop} \label{CohomotopyChargeMapIsEquivalenceOnSPhereLabeledConfihgurationSpace}\hypertarget{CohomotopyChargeMapIsEquivalenceOnSPhereLabeledConfihgurationSpace}{} \textbf{([[Cohomotopy charge map]] is [[weak homotopy equivalence]] on sphere-labeled [[configuration space of points]])} For $D, k \in \mathbb{N}$ with $k \geq 1$, the [[Cohomotopy charge map]] \eqref{CohomotopyChargeMapOnEuclideanSpace} \begin{displaymath} Conf \big( \mathbb{R}^D, S^k \big) \underoverset{\simeq}{cc}{\longrightarrow} \Omega^D S^{D + k} \end{displaymath} is a [[weak homotopy equivalence]] from the configuration space (\href{configuration+space+of+points#eq:UnorderedLabeledCOnfigurationSpace}{here}) of unordered points with labels in $S^k$ and vanishing at the base point of the label space to the $D$-fold [[iterated loop space]] of the [[n-sphere|D+k-sphere]]. \end{prop} (\href{Cohomotopy+charge#Segal73}{Segal 73, Theorem 3}) The May-Segal theorem \ref{ScanningMapEquivalenceOverCartesianSpace} generalizes from [[Euclidean space]] to [[closed manifold|closed]] [[smooth manifolds]] if at the same time one passes from plain [[Cohomotopy]] to [[twisted Cohomotopy]], twisted, via the [[J-homomorphism]], by the [[tangent bundle]]: \begin{prop} \label{ScanningMapEquivalenceOverClosedManifold}\hypertarget{ScanningMapEquivalenceOverClosedManifold}{} Let \begin{enumerate}% \item $X^n$ be a [[smooth manifold|smooth]] [[closed manifold]] of [[dimension]] $n$; \item $1 \leq k \in \mathbb{N}$ a [[positive number|positive]] [[natural number]]. \end{enumerate} Then the [[Cohomotopy charge map]] constitutes a [[weak homotopy equivalence]] \begin{displaymath} \underset{ \color{blue} { \phantom{a} \atop \text{ J-twisted Cohomotopy space}} }{ Maps_{{}_{/B O(n)}} \Big( X^n \;,\; S^{ \mathbf{n}_{def} + \mathbf{k}_{\mathrm{triv}} } \!\sslash\! O(n) \Big) } \underoverset {\simeq} { \color{blue} \text{Cohomotopy charge map} } {\longleftarrow} \underset{ \mathclap{ \color{blue} { \phantom{a} \atop { \text{configuration space} \atop \text{of points} } } } }{ Conf \big( X^n, S^k \big) } \end{displaymath} between \begin{enumerate}% \item the [[J-homomorphism|J]]-[[twisted Cohomotopy|twisted (n+k)-Cohomotopy]] space of $X^n$, hence the [[space of sections]] of the $(n + k)$-[[spherical fibration]] over $X$ which is [[associated fiber bundle|associated]] via the [[tangent bundle]] by the [[O(n)]]-[[action]] on $S^{n+k} = S(\mathbb{R}^{n} \times \mathbb{R}^{k+1})$ \item the [[configuration space of points]] on $X^n$ with labels in $S^k$. \end{enumerate} \end{prop} (\href{Cohomotopy+charge#Boedigheimer87}{Bödigheimer 87, Prop. 2}, following \href{Cohomotopy+charge#McDuff75}{McDuff 75}) \begin{prop} \label{ScanningMapEquivalenceOverClosedFramedManifold}\hypertarget{ScanningMapEquivalenceOverClosedFramedManifold}{} In the special case that the [[closed manifold]] $X^n$ in Prop. \ref{ScanningMapEquivalenceOverClosedManifold} is [[parallelizable manifold|parallelizable]], hence that its [[tangent bundle]] is [[trivial bundle|trivializable]], the statement of Prop. \ref{ScanningMapEquivalenceOverClosedManifold} reduces to this: Let \begin{enumerate}% \item $X^n$ be a [[parallelizable manifold|parallelizable]] [[closed manifold]] of [[dimension]] $n$; \item $1 \leq k \in \mathbb{N}$ a [[positive number|positive]] [[natural number]]. \end{enumerate} Then the [[Cohomotopy charge map]] constitutes a [[weak homotopy equivalence]] \begin{displaymath} \underset{ \color{blue} { \phantom{a} \atop \text{ Cohomotopy space}} }{ Maps \Big( X^n \;,\; S^{ n + k } \Big) } \underoverset {\simeq} { \color{blue} \text{Cohomotopy charge map} } {\longleftarrow} \underset{ \mathclap{ \color{blue} { \phantom{a} \atop { \text{configuration space} \atop \text{of points} } } } }{ Conf \big( X^n, S^k \big) } \end{displaymath} between \begin{enumerate}% \item $(n+k)$-[[Cohomotopy]] space of $X^n$, hence the [[space of maps]] from $X$ to the [[n-sphere|(n+k)-sphere]] \item the [[configuration space of points]] on $X^n$ with labels in $S^k$. \end{enumerate} \end{prop} $\backslash$linebreak \hypertarget{complexrational_cohomotopy_and_moduli_space_of_yang0mills_monopoles}{}\subsubsection*{{Complex-rational Cohomotopy and moduli space of Yang-0Mills monopoles}}\label{complexrational_cohomotopy_and_moduli_space_of_yang0mills_monopoles} The assignment of [[scattering amplitudes]] of [[monopoles]] in [[SU(2)]]-[[Yang-Mills theory]] is a [[diffeomorphism]] \begin{displaymath} \mathcal{M}_k \overset{ S }{\longrightarrow} R_k \end{displaymath} identifying the [[moduli space of monopoles]] of number $k$ with the space of complex-[[rational functions]] form the [[Riemann sphere]] to itself, of [[degree of a continuous function|degree]] $k$ (hence the [[cocycle space]] of complex-rational 2-[[Cohomotopy]]). (\href{moduli+space+of+monopoles#AtiyahHitchin88}{Atiyah-Hitchin 88, Theorem 2.10}) $\,$ This is a [[non-abelian group|non-abelian]] analog of the [[Dirac charge quantization]] of the [[electromagnetic field]], with [[ordinary cohomology]] replaced by [[Cohomotopy]] [[generalized cohomology theory|cohomology theory]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{On4Manifolds}{}\subsubsection*{{Of 4-Manifolds}}\label{On4Manifolds} Let $X$ be a [[4-manifold]] which is [[connected topological space|connected]] and [[orientation|oriented]]. The [[Pontryagin-Thom construction]] as \hyperlink{RelationToCobordismGroup}{above} gives for $n \in \mathbb{Z}$ the [[commuting diagram]] of sets \begin{displaymath} \itexarray{ \pi^n(X) &\overset{\simeq}{\longrightarrow}& \mathbb{F}_{4-n}(X) \\ {}^{ \mathllap{h^n} } \downarrow && \downarrow^{ h_{4-n} } \\ H^n(X,\mathbb{Z}) &\underset{\simeq}{\longrightarrow}& H_{4-n}(X,\mathbb{Z}) \,, } \end{displaymath} where $\pi^\bullet$ denotes cohomotopy sets, $H^\bullet$ denotes [[ordinary cohomology]], $H_\bullet$ denotes [[ordinary homology]] and $\mathbb{F}_\bullet$ is [[normal bundle|normally]] [[framing|framed]] [[cobordism classes]] of [[normal bundle|normally]] [[framing|framed]] [[submanifolds]]. Finally $h^n$ is the operation of pullback of the generating integral cohomology class on $S^n$ (by the nature of [[Eilenberg-MacLane spaces]]): \begin{displaymath} h^n(\alpha) \;\colon\; X \overset{\alpha}{\longrightarrow} S^n \overset{generator}{\longrightarrow} B^n \mathbb{Z} \,. \end{displaymath} Now \begin{itemize}% \item $h^0$, $h^1$, $h^4$ are [[isomorphisms]] \item $h^3$ is an isomorphism if $X$ is ``odd'' in that it contains at least one closed oriented [[surface]] of odd self-intersection, otherwise $h^3$ becomes an isomorphism on a $\mathbb{Z}/2$-[[quotient group]] of $\pi^3(X)$ (which is a group via the [[group]]-[[structure]] of the [[3-sphere]] ([[special unitary group|SU(2)]])) \end{itemize} (\hyperlink{KirbyMelvinTeichner12}{Kirby-Melvin-Teichner 12}) $\backslash$linebreak \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include flavours of cohomotopy -- table]] $\backslash$linebreak [[!include Segal completion -- table]] $\backslash$linebreak \begin{itemize}% \item [[Cohomotopy charge map]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general_2}{}\subsubsection*{{General}}\label{general_2} Original articles include \begin{itemize}% \item [[K. Borsuk]], \emph{Sur les groupes des classes de transformations continues}, CR Acad. Sci. Paris 202.1400-1403 (1936): 2 (\href{https://doi.org/10.24033/asens.603}{doi:10.24033/asens.603}) \item [[Edwin Spanier]], \emph{Borsuk's Cohomotopy Groups}, Annals of Mathematics Second Series, Vol. 50, No. 1 (Jan., 1949), pp. 203-245 (\href{http://www.jstor.org/stable/1969362}{jstor:1969362}) \item Franklin P. Peterson, \emph{Some Results on Cohomotopy Groups}, American Journal of Mathematics Vol. 78, No. 2 (Apr., 1956), pp. 243-258 (\href{https://www.jstor.org/stable/2372514}{jstor:2372514}) \item [[Jan Jaworowski]], \emph{Generalized cohomotopy groups as limit groups}, Fundamenta Mathematicae 50 (1962), 393-402 (\href{https://www.impan.pl/en/publishing-house/journals-and-series/fundamenta-mathematicae/all/50/4}{doi:10.4064/fm-50-4-333-340}, \href{http://matwbn.icm.edu.pl/ksiazki/fm/fm50/fm50133.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Cohomotopy_group}{Cohomotopy group}} \item [[eom]], \emph{\href{https://www.encyclopediaofmath.org/index.php/Cohomotopy_group}{Cohomotopy group}} \end{itemize} The unstable [[Pontrjagin-Thom theorem]] identifying [[cobordism classes]] of [[normally framed submanifolds]] with their [[Cohomotopy charge]] is discussed for instance in: \begin{itemize}% \item [[Antoni Kosinski]], chapter IX of \emph{Differential manifolds}, Academic Press 1993 (\href{http://www.maths.ed.ac.uk/~v1ranick/papers/kosinski.pdf}{pdf}) \end{itemize} Further discussion includes \begin{itemize}% \item [[Laurence Taylor]], \emph{The principal fibration sequence and the second cohomotopy set}, Proceedings of the Freedman Fest, 235251, Geom. Topol. Monogr., 18, Coventry, 2012 (\href{https://arxiv.org/abs/0910.1781}{arXiv:0910.1781}) \item [[Robion Kirby]], [[Paul Melvin]], [[Peter Teichner]], \emph{Cohomotopy sets of 4-manifolds}, Geometry \& Topology Monographs 18 (2012) 161–190 (\href{https://arxiv.org/abs/1203.1608}{arXiv:1203.1608}) \item [[Martin Čadek]], Marek Krčál, Jiří Matoušek, Francis Sergeraert, Lukáš Vokřínek, Uli Wagner, \emph{Computing all maps into a sphere}, Journal of the ACM, Volume 61 Issue 3, May 2014 Article No. 1 (\href{https://arxiv.org/abs/1105.6257}{arxiv:1105.6257}) \end{itemize} \hypertarget{cohomotopy_cocycle_spaces}{}\subsubsection*{{Cohomotopy cocycle spaces}}\label{cohomotopy_cocycle_spaces} Discussion of Cohomotopy [[cocycle spaces]] (i.e. [[spaces of maps]] into an [[n-sphere]]): \begin{itemize}% \item [[Vagn Lundsgaard Hansen]], \emph{The homotopy problem for the components in the space of maps on the $n$-sphere}, Quart. J. Math. Oxford Ser. (3) 25 (1974), 313-321 (\href{https://doi.org/10.1093/qmath/25.1.313}{DOI:10.1093/qmath/25.1.313}) \item [[Vagn Lundsgaard Hansen]], \emph{On Spaces of Maps of $n$-Manifolds Into the $n$-Sphere}, Transactions of the American Mathematical Society Vol. 265, No. 1 (May, 1981), pp. 273-281 (\href{https://www.jstor.org/stable/1998494}{jstor:1998494}) \end{itemize} Discussion of [[cocycle spaces]] for [[rational Cohomotopy]] (see also at \emph{[[rational model of mapping spaces]]}): \begin{itemize}% \item [[Jesper Møller]], [[Martin Raussen]], \emph{Rational Homotopy of Spaces of Maps Into Spheres and Complex Projective Spaces}, Transactions of the American Mathematical Society Vol. 292, No. 2 (Dec., 1985), pp. 721-732 (\href{https://www.jstor.org/stable/2000242}{jstor:2000242}) \end{itemize} \hypertarget{relation_to_knots_and_links}{}\subsubsection*{{Relation to knots and links}}\label{relation_to_knots_and_links} Relation to [[knots]] and [[links]]: \begin{itemize}% \item Maths.SE, \emph{\href{https://math.stackexchange.com/q/426482/58526}{Framed Cobordism Classes of links in $\mathbb{R}^3$}} \end{itemize} \hypertarget{application_to_persistency}{}\subsubsection*{{Application to persistency}}\label{application_to_persistency} Application of Cohomotopy similar to that of [[persistent homology]]: \begin{itemize}% \item [[Peter Franek]], [[Marek Krčál]], \emph{Persistence of Zero Sets}, Homology, Homotopy and Applications, Volume 19 (2017) Number 2 (\href{https://arxiv.org/abs/1507.04310}{arXiv:1507.04310}, \href{http://dx.doi.org/10.4310/HHA.2017.v19.n2.a16}{doi:10.4310/HHA.2017.v19.n2.a16}) \item [[Peter Franek]], [[Marek Krčál]], \emph{Cohomotopy groups capture robust Properties of Zero Sets via Homotopy Theory}, talk at \href{https://www2.ist.ac.at/acat}{ACAT meeting 2015} (\href{https://www2.ist.ac.at/fileadmin/user_upload/events_pages/acat/ACAT2015_Marek_Krcal.pdf}{pfd slides}) \item [[Peter Franek]], [[Marek Krčál]], Hubert Wagner, \emph{Solving equations and optimization problems with uncertainty}, J Appl. and Comput. Topology (2018) 1: 297 (\href{https://arxiv.org/abs/1607.06344}{arxiv:1607.06344}, \href{https://doi.org/10.1007/s41468-017-0009-6}{doi:10.1007/s41468-017-0009-6}) \end{itemize} \hypertarget{equivariant_cohomotopy}{}\subsubsection*{{Equivariant Cohomotopy}}\label{equivariant_cohomotopy} Discussion of the [[stable cohomotopy|stable]] cohomotopy ([[framed manifold|framed]] [[cobordism cohomology theory]]) in the [[equivariant cohomology]]-version of cohomotopy ([[equivariant cohomotopy]]): \begin{itemize}% \item [[Arthur Wasserman]], section 3 of \emph{Equivariant differential topology}, Topology Vol. 8, pp. 127-150, 1969 (\href{https://web.math.rochester.edu/people/faculty/doug/otherpapers/wasserman.pdf}{pdf}) \item [[James Cruickshank]], \emph{Twisted homotopy theory and the geometric equivariant 1-stem}, Topology and its Applications Volume 129, Issue 3, 1 April 2003, Pages 251-271 () \end{itemize} and in the [[twisted cohomology]]-version ([[twisted cohomotopy]]) \begin{itemize}% \item [[James Cruickshank]], Section 7 of \emph{Twisted homotopy theory and the geometric equivariant 1-stem}, Topology and its Applications Volume 129, Issue 3, 1 April 2003, Pages 251-271 () \end{itemize} Discussion of [[M-brane]] physics in terms of [[equivariant rational homotopy theory|rational equivariant]] cohomotopy: \begin{itemize}% \item [[John Huerta]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Equivariant homotopy and super M-branes|Real ADE-equivariant (co)homotopy and Super M-branes]]} (\href{https://arxiv.org/abs/1805.05987}{arXiv:1805.05987}) \end{itemize} and in terms of [[twisted cohomotopy]]: \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], Section 3 of \emph{[[schreiber:Twisted Cohomotopy implies M-theory anomaly cancellation]]} (\href{https://arxiv.org/abs/1904.10207}{arXiv:1904.10207}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Twisted Cohomotopy implies M5 WZ term level quantization|Twisted Cohomotopy implies level quantization of the full 6d Wess-Zumino-term of the M5-brane]]} (\href{https://arxiv.org/abs/1906.07417}{arXiv:1906.07417}) \item [[nLab:Hisham Sati]], [[nLab:Urs Schreiber]], \emph{[[schreiber:Equivariant Cohomotopy implies orientifold tadpole cancellation]]} (\href{https://arxiv.org/abs/1909.12277}{arXiv:1909.12277}) \end{itemize} \hypertarget{in_spectral_geometry}{}\subsubsection*{{In spectral geometry}}\label{in_spectral_geometry} Discussion of [[smooth functions]] into the [[4-sphere]] in the context of [[Connes-Lott models]] in spectral [[non-commutative geometry]]: \begin{itemize}% \item [[Ali Chamseddine]], [[Alain Connes]], Viatcheslav Mukhanov, \emph{Quanta of Geometry: Noncommutative Aspects}, Phys. Rev. Lett. 114 (2015) 9, 091302 (\href{https://arxiv.org/abs/1409.2471}{arXiv:1409.2471}) \item [[Ali Chamseddine]], [[Alain Connes]], Viatcheslav Mukhanov, \emph{Geometry and the Quantum: Basics}, JHEP 12 (2014) 098 (\href{https://arxiv.org/abs/1411.0977}{arXiv:1411.0977}) \item [[Alain Connes]], section 4 of \emph{Geometry and the Quantum}, in \emph{Foundations of Mathematics and Physics One Century After Hilbert}, Springer 2018. 159-196 (\href{https://arxiv.org/abs/1703.02470}{arXiv:1703.02470}, \href{https://www.springer.com/gp/book/9783319648125}{doi:10.1007/978-3-319-64813-2}) \end{itemize} [[!redirects Cohomotopy]] [[!redirects cohomotopy theory]] [[!redirects Cohomotopy theory]] [[!redirects cohomotopy set]] [[!redirects cohomotopy sets]] [[!redirects Cohomotopy set]] [[!redirects Cohomotopy sets]] [[!redirects cohomotopy group]] [[!redirects cohomotopy groups]] [[!redirects Cohomotopy group]] [[!redirects Cohomotopy groups]] [[!redirects cohomotopy cohomology ]] [[!redirects cohomotopy cohomology theory]] [[!redirects Cohomotopy cohomology ]] [[!redirects Cohomotopy cohomology theory]] \end{document}