\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cohomotopy charge map} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ForChargedPoints}{For charged points}\dotfill \pageref*{ForChargedPoints} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{characterization_of_cobordism_classes_by_their_cohomotopy_charge}{Characterization of cobordism classes by their Cohomotopy charge}\dotfill \pageref*{characterization_of_cobordism_classes_by_their_cohomotopy_charge} \linebreak \noindent\hyperlink{CharacterizationOfPointConfigurations}{Characterization of point configurations by their Cohomotopy charge}\dotfill \pageref*{CharacterizationOfPointConfigurations} \linebreak \noindent\hyperlink{on_euclidean_spaces_via_plain_cohomotopy}{On Euclidean spaces via plain Cohomotopy}\dotfill \pageref*{on_euclidean_spaces_via_plain_cohomotopy} \linebreak \noindent\hyperlink{on_closed_manifolds_via_twisted_cohomotopy}{On closed manifolds via twisted Cohomotopy}\dotfill \pageref*{on_closed_manifolds_via_twisted_cohomotopy} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general_2}{General}\dotfill \pageref*{general_2} \linebreak \noindent\hyperlink{for_point_configurations}{For point configurations}\dotfill \pageref*{for_point_configurations} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The \emph{Cohomotopy charge map} is the [[function]] that assigns to a [[configuration space (mathematics)|configuration]] of [[normally framed submanifolds]] of [[codimension]] $n$ their total [[charge]] as measured in $n$-[[Cohomotopy]]-[[generalized cohomology|cohomology theory]]. Concretely, this is the function which assigns to a [[normally framed submanifold]] its \textbf{asymptotic normal distance function}, namely the [[distance]] from the [[submanifold]] measured \begin{enumerate}% \item in [[direction vector|direction]] [[orthogonality|perpendicular]] to the submanifold, as encoded by the [[normal framing]]; \item asymptotically, regarding all points outside a [[tubular neighbourhood]] as being [[one-point compactification|at infinity]]. \end{enumerate} \begin{quote}% graphics grabbed from \hyperlink{SatiSchreiber19}{SS 19} \end{quote} For general $n$ this is known as the ``[[Pontrjagin-Thom collapse construction]]''. \hypertarget{ForChargedPoints}{}\subsubsection*{{For charged points}}\label{ForChargedPoints} For maximal [[codimension]] $n$ inside an [[orientation|oriented]] [[smooth manifold|manifold]], hence for 0-dimensional submanifolds, hence for [[configuration space of points|configurations of points]] and with all points regarded as equipped with positive normal framing, the Cohomotopy charge map is alternatively known as the ``electric field map'' (\hyperlink{Salvatore01}{Salvatore 01} following \hyperlink{Segal73}{Segal 73, Section 1}, see also \hyperlink{Knudsen18}{Knudsen 18, p. 49}) or the ``scanning map'' (\hyperlink{Kallel98}{Kallel 98}, \hyperlink{ManthorpeTillmann13}{Manthorpe-Tillmann 13}): In maximal [[codimension]] $D \in \mathbb{N}$, the \emph{Cohomotopy charge map} is thus the [[continuous function]] \begin{equation} Conf\big( \mathbb{R}^D \big) \overset{cc}{\longrightarrow} \mathbf{\pi}^D \Big( \big( \mathbb{R}^D \big)^{cpt} \Big) = Maps^{\ast/\!}\Big( \big(\mathbb{R}^D\big)^{cpt} , S^D\big) = \Omega^{D} S^D \label{CohomotopyChargeMapOnEuclideanSpace}\end{equation} from the [[configuration space of points]] in the [[Euclidean space]] $\mathbb{R}^D$ to the $D$-[[Cohomotopy]] [[cocycle space]] [[vanishing at infinity]] on the [[Euclidean space]](which is equivalently the [[space of maps|space of pointed maps]] from the [[one-point compactification]] $S^D \simeq \big( \mathbb{R}^D \big)$ to itself, and hence equivalently the $D$-fold [[iterated based loop space]] of the [[n-sphere|D-sphere]]), which sends a configuration of points in $\mathbb{R}^D$, each regarded as carrying unit [[charge]] to their total [[charge]] as measured in [[Cohomotopy]]-[[generalized cohomology|cohomology theory]] (\hyperlink{Segal73}{Segal 73, Section 3}). \begin{quote}% graphics grabbed from \hyperlink{SatiSchreiber19}{SS 19} \end{quote} (See also at \emph{[[cobordism]] -- \href{cobordism#RelationToCohomotopy}{Relation to Cohomotopy}}.) This has evident generalizations to other manifolds than just Euclidean spaces, to spaces of labeled configurations and to [[equivariant Cohomotopy]]. The following graphics illustrates the Cohomotopy charge map on [[G-space]] [[tori]] for $G = \mathbb{Z}_2$ with values in $\mathbb{Z}_2$-[[equivariant Cohomotopy]]: \begin{quote}% graphics grabbed from \hyperlink{SatiSchreiber19}{SS 19} \end{quote} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{characterization_of_cobordism_classes_by_their_cohomotopy_charge}{}\subsubsection*{{Characterization of cobordism classes by their Cohomotopy charge}}\label{characterization_of_cobordism_classes_by_their_cohomotopy_charge} The unstable [[Pontrjagin-Thom theorem]] states that Cohomotopy charge faithfully reflects [[configuration space (mathematics)|configurations]] of [[normally framed submanifolds]] up to normally framed embedded [[cobordism]], hence that the [[Pontrjagin-Thom collapse construction]] induces a [[bijection]] between [[cobordism classes]] of [[normally framed submanifolds]] and the [[Cohomotopy set]] in degree the respective [[codimension]]: \begin{displaymath} \left\{ { { \text{normally framed submanifolds} } \atop { \text{in}\;X\;\text{of codimension}\; n } } \right\} \Big/_{\sim_{cobordism}} \underoverset{\simeq}{cc}{\longrightarrow} \underset{ \mathclap{ \color{blue} { \text{Cohomotopy} \atop \text{set} } } }{ \pi^n\big( X \big) } \end{displaymath} For more details see \href{cohomotopy#RelationToCobordismGroup}{here}. In goos situations this [[bijection]] of [[sets]] of [[homotopy classes]] enhances to a [[weak equivalence]] of [[configuration space (mathematics)|configuration spaces]]/[[cocycle spaces]]. See \emph{\hyperlink{CharacterizationOfPointConfigurations}{Characterization of point configurations by their Cohomotopy charge}} below. $\backslash$linebreak \hypertarget{CharacterizationOfPointConfigurations}{}\subsubsection*{{Characterization of point configurations by their Cohomotopy charge}}\label{CharacterizationOfPointConfigurations} In some situations the [[Cohomotopy charge map]] is a [[weak homotopy equivalence]] and hence exhibits, for all purposes of [[homotopy theory]], the [[Cohomotopy]] [[cocycle space]] of Cohomotopy charges as an equivalent reflection of the [[configuration space of points]]. \hypertarget{on_euclidean_spaces_via_plain_cohomotopy}{}\paragraph*{{On Euclidean spaces via plain Cohomotopy}}\label{on_euclidean_spaces_via_plain_cohomotopy} \begin{prop} \label{GroupCompletionOfConfigurationSpaceIsIteratedBasedLoopSpace}\hypertarget{GroupCompletionOfConfigurationSpaceIsIteratedBasedLoopSpace}{} \textbf{([[group completion]] on [[configuration space of points]] is [[iterated based loop space]])} The [[Cohomotopy charge map]] \eqref{CohomotopyChargeMapOnEuclideanSpace} \begin{displaymath} Conf \big( \mathbb{R}^D \big) \overset{ cc }{\longrightarrow} \Omega^D S^D \end{displaymath} from the full unordered and unlabeled configuration space (\href{configuration+space+of+points#eq:UnorderedUnlabeledConfigurationSpace}{here}) of [[Euclidean space]] $\mathbb{R}^D$ to the $D$-fold [[iterated based loop space]] of the [[n-sphere|D-sphere]], exhibits the [[group completion]] (\href{configuration+space+of+points#eq:GroupCompletionOfConfigurationSpaceMonoid}{here}) of the configuration space monoid \begin{displaymath} \Omega B_{{}_{\sqcup}\!} Conf \big( \mathbb{R}^D \big) \overset{ \simeq }{\longrightarrow} \Omega^D S^D \end{displaymath} \end{prop} (\hyperlink{Segal73}{Segal 73, Theorem 1}) \begin{prop} \label{CohomotopyChargeMapIsEquivalenceOnSPhereLabeledConfihgurationSpace}\hypertarget{CohomotopyChargeMapIsEquivalenceOnSPhereLabeledConfihgurationSpace}{} \textbf{([[Cohomotopy charge map]] is [[weak homotopy equivalence]] on sphere-labeled [[configuration space of points]])} For $D, k \in \mathbb{N}$ with $k \geq 1$, the [[Cohomotopy charge map]] \eqref{CohomotopyChargeMapOnEuclideanSpace} \begin{displaymath} Conf \big( \mathbb{R}^D, S^k \big) \underoverset{\simeq}{cc}{\longrightarrow} \Omega^D S^{D + k} \end{displaymath} is a [[weak homotopy equivalence]] from the configuration space (\href{configuration+space+of+points#eq:UnorderedLabeledCOnfigurationSpace}{here}) of unordered points with labels in $S^k$ and vanishing at the base point of the label space to the $D$-fold [[iterated loop space]] of the [[n-sphere|D+k-sphere]]. \end{prop} (\hyperlink{Segal73}{Segal 73, Theorem 3}) \hypertarget{on_closed_manifolds_via_twisted_cohomotopy}{}\paragraph*{{On closed manifolds via twisted Cohomotopy}}\label{on_closed_manifolds_via_twisted_cohomotopy} The May-Segal theorem \ref{ScanningMapEquivalenceOverCartesianSpace} generalizes from [[Euclidean space]] to [[closed manifold|closed]] [[smooth manifolds]] if at the same time one passes from plain [[Cohomotopy]] to [[twisted Cohomotopy]], twisted, via the [[J-homomorphism]], by the [[tangent bundle]]: \begin{prop} \label{ScanningMapEquivalenceOverClosedManifold}\hypertarget{ScanningMapEquivalenceOverClosedManifold}{} Let \begin{enumerate}% \item $X^n$ be a [[smooth manifold|smooth]] [[closed manifold]] of [[dimension]] $n$; \item $1 \leq k \in \mathbb{N}$ a [[positive number|positive]] [[natural number]]. \end{enumerate} Then the [[Cohomotopy charge map]] constitutes a [[weak homotopy equivalence]] \begin{displaymath} \underset{ \color{blue} { \phantom{a} \atop \text{ J-twisted Cohomotopy space}} }{ Maps_{{}_{/B O(n)}} \Big( X^n \;,\; S^{ \mathbf{n}_{def} + \mathbf{k}_{\mathrm{triv}} } \!\sslash\! O(n) \Big) } \underoverset {\simeq} { \color{blue} \text{Cohomotopy charge map} } {\longleftarrow} \underset{ \mathclap{ \color{blue} { \phantom{a} \atop { \text{configuration space} \atop \text{of points} } } } }{ Conf \big( X^n, S^k \big) } \end{displaymath} between \begin{enumerate}% \item the [[J-homomorphism|J]]-[[twisted Cohomotopy|twisted (n+k)-Cohomotopy]] space of $X^n$, hence the [[space of sections]] of the $(n + k)$-[[spherical fibration]] over $X$ which is [[associated fiber bundle|associated]] via the [[tangent bundle]] by the [[O(n)]]-[[action]] on $S^{n+k} = S(\mathbb{R}^{n} \times \mathbb{R}^{k+1})$ \item the [[configuration space of points]] on $X^n$ with labels in $S^k$. \end{enumerate} \end{prop} (\hyperlink{Boedigheimer87}{Bödigheimer 87, Prop. 2}, following \hyperlink{McDuff75}{McDuff 75}) \begin{prop} \label{ScanningMapEquivalenceOverClosedFramedManifold}\hypertarget{ScanningMapEquivalenceOverClosedFramedManifold}{} In the special case that the [[closed manifold]] $X^n$ in Prop. \ref{ScanningMapEquivalenceOverClosedManifold} is [[parallelizable manifold|parallelizable]], hence that its [[tangent bundle]] is [[trivial bundle|trivializable]], the statement of Prop. \ref{ScanningMapEquivalenceOverClosedManifold} reduces to this: Let \begin{enumerate}% \item $X^n$ be a [[parallelizable manifold|parallelizable]] [[closed manifold]] of [[dimension]] $n$; \item $1 \leq k \in \mathbb{N}$ a [[positive number|positive]] [[natural number]]. \end{enumerate} Then the [[Cohomotopy charge map]] constitutes a [[weak homotopy equivalence]] \begin{displaymath} \underset{ \color{blue} { \phantom{a} \atop \text{ Cohomotopy space}} }{ Maps \Big( X^n \;,\; S^{ n + k } \Big) } \underoverset {\simeq} { \color{blue} \text{Cohomotopy charge map} } {\longleftarrow} \underset{ \mathclap{ \color{blue} { \phantom{a} \atop { \text{configuration space} \atop \text{of points} } } } }{ Conf \big( X^n, S^k \big) } \end{displaymath} between \begin{enumerate}% \item $(n+k)$-[[Cohomotopy]] space of $X^n$, hence the [[space of maps]] from $X$ to the [[n-sphere|(n+k)-sphere]] \item the [[configuration space of points]] on $X^n$ with labels in $S^k$. \end{enumerate} \end{prop} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general_2}{}\subsubsection*{{General}}\label{general_2} In the general guise of the [[Pontrjagin-Thom construction]] the concept of Cohomotopy charge goes back to \begin{itemize}% \item [[René Thom]], \emph{Quelques propri\'e{}t\'e{}s globales des vari\'e{}t\'e{}s diff\'e{}rentiables} Comment. Math. Helv. 28, (1954). 17-86 (\href{http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002056259}{digiz:GDZPPN002056259}) \item [[Lev Pontrjagin]], \emph{Smooth manifolds and their applications in Homotopy theory}, Trudy Mat. Inst. im Steklov, No 45, Izdat. Akad. Nauk. USSR, Moscow, 1955 (AMS Translation Series 2, Vol. 11, 1959) (\href{https://web.math.rochester.edu/people/faculty/doug/otherpapers/pont4.pdf}{pdf}, \href{https://www.worldscientific.com/doi/abs/10.1142/9789812772107_0001}{doi:10.1142/9789812772107\_0001}) \end{itemize} A textbook account of the unstable [[Pontrjagin-Thom theorem]] is in \begin{itemize}% \item [[Antoni Kosinski]], chapter IX of \emph{Differential manifolds}, Academic Press 1993 (\href{http://www.maths.ed.ac.uk/~v1ranick/papers/kosinski.pdf}{pdf}) \end{itemize} \hypertarget{for_point_configurations}{}\subsubsection*{{For point configurations}}\label{for_point_configurations} The theorem that, with due care, for [[configuration space of points|point configurations]] the Cohomotopy charge map is in fact a [[weak homotopy equivalence]] between the [[configuration space of points]] and the [[Cohomotopy]] [[cocycle space]] originates with \begin{itemize}% \item [[Peter May]], \emph{The geometry of iterated loop spaces}, Springer 1972 (\href{https://www.math.uchicago.edu/~may/BOOKS/geom_iter.pdf}{pdf}) \item [[Graeme Segal]], \emph{Configuration-spaces and iterated loop-spaces}, Invent. Math. \textbf{21} (1973), 213--221. MR 0331377 (\href{http://dodo.pdmi.ras.ru/~topology/books/segal.pdf}{pdf}) \item [[Dusa McDuff]], \emph{Configuration spaces of positive and negative particles}, Topology Volume 14, Issue 1, March 1975, Pages 91-107 () \end{itemize} with comprehensive review in \begin{itemize}% \item [[Carl-Friedrich Bödigheimer]], \emph{Stable splittings of mapping spaces}, Algebraic topology. Springer 1987. 174-187 (\href{http://www.math.uni-bonn.de/~cfb/PUBLICATIONS/stable-splittings-of-mapping-spaces.pdf}{pdf}, [[BoedigheimerStableSplittings87.pdf:file]]) \end{itemize} See also: \begin{itemize}% \item [[Sadok Kallel]], \emph{Particle Spaces on Manifolds and Generalized Poincaré Dualities} (\href{https://arxiv.org/abs/math/9810067}{arXiv:math/9810067}) \item [[Paolo Salvatore]], \emph{Configuration spaces with summable labels}, In: Aguadé J., Broto C., [[Carles Casacuberta]] (eds.) \emph{Cohomological Methods in Homotopy Theory}. Progress in Mathematics, vol 196. Birkhäuser, Basel, 2001 (\href{https://arxiv.org/abs/math/9907073}{arXiv:math/9907073}) \item Richard Manthorpe, [[Ulrike Tillmann]], \emph{Tubular configurations: equivariant scanning and splitting}, Journal of the London Mathematical Society, Volume 90, Issue 3 (\href{https://arxiv.org/abs/1307.5669}{arxiv:1307.5669}, \href{https://doi.org/10.1112/jlms/jdu050}{doi:10.1112/jlms/jdu050}) \item [[Ben Knudsen]], \emph{Configuration spaces in algebraic topology} (\href{https://arxiv.org/abs/1803.11165}{arXiv:1803.11165}) \item [[nLab:Hisham Sati]], [[nLab:Urs Schreiber]], \emph{[[schreiber:Equivariant Cohomotopy implies orientifold tadpole cancellation]]} (\href{https://arxiv.org/abs/1909.12277}{arXiv:1909.12277}) \end{itemize} [[!redirects cohomotopy charge map]] [[!redirects cohomotopy charge maps]] [[!redirects Cohomotopy charge map]] [[!redirects Cohomotopy charge maps]] [[!redirects scanning map]] [[!redirects scanning maps]] [[!redirects scanning map equivalence]] [[!redirects scanning map equivalences]] [[!redirects cohomotopy charge]] [[!redirects cohomotopy charges]] [[!redirects Cohomotopy charge]] [[!redirects Cohomotopy charges]] \end{document}