\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{colimits in categories of algebras} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] [[!redirects cocompleteness of categories of algebras]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{introduction}{Introduction}\dotfill \pageref*{introduction} \linebreak \noindent\hyperlink{reflexive_coequalizers_and_cocompleteness}{Reflexive coequalizers and cocompleteness}\dotfill \pageref*{reflexive_coequalizers_and_cocompleteness} \linebreak \noindent\hyperlink{categories_of_algebras_are_barr_exact}{Categories of algebras are Barr exact}\dotfill \pageref*{categories_of_algebras_are_barr_exact} \linebreak \noindent\hyperlink{for_functors_preserving_filtered_colimits}{For functors preserving filtered colimits}\dotfill \pageref*{for_functors_preserving_filtered_colimits} \linebreak \noindent\hyperlink{for_locally_presentable_categories}{For locally presentable categories}\dotfill \pageref*{for_locally_presentable_categories} \linebreak \noindent\hyperlink{relatively_free_functors}{Relatively free functors}\dotfill \pageref*{relatively_free_functors} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{introduction}{}\subsection*{{Introduction}}\label{introduction} Let $T$ be a [[monad]] on a [[category]] $C$, and let $C^T$ denote the [[Eilenberg-Moore category]] of $T$, i.e., the category of $T$-algebras. Let \begin{displaymath} U: C^T \to C \end{displaymath} be the usual underlying or [[forgetful functor]], with [[left adjoint]] $F: C \to C^T$, [[unit of an adjunction|unit]] $\eta: 1_C \to U F$, and counit $\varepsilon: F U \to 1_{C^T}$. It is well-known that $U$ [[reflected limit|reflects limits]], so that if $C$ is [[complete category|complete]], then $C^T$ is also complete and $U$ is [[continuous functor|continuous]]. The situation with regard to colimits is more complicated. It is not generally true that if $C$ is cocomplete, then $C^T$ is also. (See \hyperlink{AK}{Ad\'a{}mek \& Koubek}, III.10, for an example when $C =$ [[Pos]].) In this article we collect various results that guarantee existence of colimits of algebras. \hypertarget{reflexive_coequalizers_and_cocompleteness}{}\subsection*{{Reflexive coequalizers and cocompleteness}}\label{reflexive_coequalizers_and_cocompleteness} A simple but basic fact is the following. Suppose $J$ is a [[small category]], and suppose that the monad $T$ preserves colimits over $J$, that is, suppose that for every $F: J \to C$ the canonical map \begin{displaymath} colim_J T \circ F \to T(colim_J F) \end{displaymath} is an [[isomorphism]]. \begin{prop} \label{}\hypertarget{}{} Under these hypotheses, $U: C^T \to C$ reflects colimits over $J$. \end{prop} Here are some sample applications of this proposition which arise frequently in practice. Let $J$ be the generic \emph{reflexive fork}, having exactly two objects $0, 1$, generated by three non-identity arrows \begin{displaymath} 0 \to 1 \stackrel{\longrightarrow}{\longrightarrow} 0, \end{displaymath} and subject to the condition that the two composites from $0$ to $0$ are the identity. A colimit over $J$ is called a [[reflexive coequalizer]]. It frequently happens that a monad $T: C \to C$ preserves reflexive coequalizers; in this case, if $C$ has reflexive coequalizers, then so does $C^T$. The following very useful observation was first made by Linton. \begin{theorem} \label{}\hypertarget{}{} If $C$ is cocomplete and $C^T$ has reflexive coequalizers, then $C^T$ is cocomplete. \end{theorem} \begin{proof} First observe that if $(c, \xi: T c \to c)$ is a $T$-algebra, then $\xi$ is the coequalizer of the reflexive fork \begin{displaymath} \itexarray{ F U c & \stackrel{F \eta U c}{\longrightarrow} & F U F U c & \stackrel{\overset{\varepsilon F U c}{\longrightarrow}}{\underset{F \xi}{\longrightarrow}} & F U c } \end{displaymath} To show $C^T$ has coproducts, let $(c_i, \xi_i)$ be a collection of algebras. Then $F(\sum_i U c_i)$ is the coproduct $\sum_i F U c_i$ in $C^T$ (since $F$ preserves coproducts and $C$ has them). We have a reflexive fork \begin{displaymath} \itexarray{ \sum_i F U c_i & \stackrel{\sum_i F \eta U c_i}{\to} & \sum_i F U F U c_i & \stackrel{\overset{\sum_i \varepsilon F U c_i}{\longrightarrow}}{\underset{\sum_i F \xi_i}{\longrightarrow}} & \sum_i F U c_i } \end{displaymath} and it is not difficult to show that the coequalizer in $C^T$ of this diagram is the coproduct $\sum_i c_i$. Finally, general coequalizers in $C^T$ are constructed from coproducts and reflexive coequalizers: given a parallel pair $f, g: c \stackrel{\longrightarrow}{\longrightarrow} d$ in $C^T$, the coequalizer of $f$ and $g$ is the colimit of the reflexive fork \begin{displaymath} \itexarray{ d & \to & c + d & \stackrel{\overset{(f, 1_d)}{\to}}{\underset{(g, 1_d)}{\to}} & d} \end{displaymath} where the first arrow is the coproduct coprojection. \end{proof} \begin{cor} \label{}\hypertarget{}{} If $T$ is a monad on a complete and cocomplete category $C$ that preserves reflexive coequalizers, then $C^T$ is complete and cocomplete. \end{cor} The hypotheses of the preceding corollary hold when $C$ is a complete, cocomplete, cartesian closed category and $T$ is the monad corresponding to a [[Lawvere theory|finitary algebraic theory]]. (The key observation being that the finitary power functors $x \mapsto x^n$ preserve reflexive coequalizers if $C$ is cartesian closed.) \begin{cor} \label{}\hypertarget{}{} If $T$ is a monad on [[Set]], then $Set^T$ is cocomplete (under the axiom of choice). Similarly upon replacing $Set$ by a slice $Set/X \simeq Set^X$, or by [[Vect]]. \end{cor} \begin{proof} It is enough to show that $Set^T$ has coequalizers. Suppose given a pair of algebra maps $f, g: A \stackrel{\to}{\to} B$ whose coequalizer we wish to construct. Let $R$ be the $T$-algebra relation \begin{displaymath} R = \langle f, g \rangle: A \to B \times B \end{displaymath} and then let $E$ be the smallest $T$-congruence (equivalence relation that is a $T$-subalgebra map $E \hookrightarrow B \times B$) through which $R$ factors. (This is the intersection of all $T$-congruences through which $R$ factors, and may be calculated in $Set$, where it is reflected in $T$-$Alg$ since $U: Set^T \to Set$ reflects arbitrary intersections.) The coequalizer as calculated in $Set$, \begin{displaymath} \itexarray{ U E & \stackrel{\overset{U \pi_1}{\longrightarrow}}{\underset{U \pi_2}{\longrightarrow}} & U B & \stackrel{p}{\longrightarrow} & Q } \end{displaymath} is a split coequalizer, because every quotient of an equivalence relation in $Set$ is a split coequalizer. (This requires the [[axiom of choice]]. A splitting is given by any splitting $i: Q \to U B$ of $p$, which picks a representative in each equivalence class, together with $\langle i p, 1 \rangle: U B \to U E$.) The proof is completed by the following lemma. \end{proof} \begin{lemma} \label{split}\hypertarget{split}{} In a category $\mathbf{C}$, given a pair $\pi_1, \pi_2: E \rightrightarrows B$ in $\mathbf{C}^T$ such that $U\pi_1, U\pi_2: U E \rightrightarrows U B$ has a split coequalizer $U B \to Q$ in $\mathbf{C}$, the pair $\pi_1, \pi_2$ has a coequalizer in $\mathbf{C}^T$ (reflected by the split coequalizer). \end{lemma} \begin{proof} (Cf. [[monadicity theorem]].) A split coequalizer is an absolute colimit, which the functor $T$ preserves. Hence the top row in \begin{displaymath} \itexarray{ T U E & \stackrel{\overset{T U\pi_1}{\to}}{\underset{T U\pi_2}{\to}} & T U B & \stackrel{T p}{\longrightarrow} & T Q \\ \downarrow & & \downarrow & & \downarrow \\ U E & \stackrel{\overset{U\pi_1}{\longrightarrow}}{\underset{U\pi_2}{\longrightarrow}} & U B & \stackrel{p}{\longrightarrow} & Q } \end{displaymath} (the first two vertical arrows being algebra structure maps) is a coequalizer in $\mathbf{C}^T$. The last vertical arrow making the diagram commute gives $Q$ a $T$-algebra structure, and the split coequalizer in the bottom row is thereby reflected in $\mathbf{C}^T$ (i.e., lifts to a coequalizer in $\mathbf{C}^T$, albeit not necessarily to one that is itself split). \end{proof} \hypertarget{categories_of_algebras_are_barr_exact}{}\subsubsection*{{Categories of algebras are Barr exact}}\label{categories_of_algebras_are_barr_exact} \begin{theorem} \label{exact}\hypertarget{exact}{} If $\mathbf{C}$ is a [[regular category]] or [[exact category]] in which regular epimorphisms [[split epimorphism|split]], and $T$ is any monad on $\mathbf{C}$, then $\mathbf{C}^T$ is a regular category (or exact category, respectively). \end{theorem} \begin{proof} For regularity, we first construct coequalizers of kernel pairs in $\mathbf{C}^T$. So suppose $\pi_1, \pi_2: E \rightrightarrows B$ is the kernel pair of some $f: B \to C$ in $\mathbf{C}^T$. The kernel pair $U\pi_1, U\pi_2: U E \to U B$ of $U f$ in $\mathbf{C}$ has a coequalizer $q: U B \to Q$ in $\mathbf{C}$, and of course $U\pi_1, U\pi_2$ is the kernel pair of $q$ as well. It follows from the splitting hypothesis that the fork \begin{displaymath} \itexarray{ U E & \stackrel{\overset{U\pi_1}{\longrightarrow}}{\underset{U\pi_2}{\longrightarrow}} & U B & \stackrel{q}{\longrightarrow} & Q} \end{displaymath} splits in $\mathbf{C}$, hence by Lemma \ref{split} this diagram lifts to a coequalizer for $\pi_1, \pi_2: E \rightrightarrows B$ in $\mathbf{C}^T$. Thus kernel pairs in $\mathbf{C}^T$ have coequalizers. That regular epis in $\mathbf{C}^T$ are stable under pullback follows a similar line of reasoning: let $p: B \to P$ be a regular epi in $\mathbf{C}^T$. It is the coequalizer of its kernel pair $\pi_1, \pi_2: E \rightrightarrows B$. We just calculated that the coequalizer $q: U B \to Q$ of $U\pi_1, U\pi_2$ in $\mathbf{C}$ lifts to $\mathbf{C}^T$, so that $Q$ is identified with $U P$ and $q$ with $U p$. Thus $U p$ is a regular epi in $\mathbf{C}$. Now if $f: A \to P$ is a map in $\mathbf{C}^T$, and $b = f^\ast p$ is the pullback of $p$ along $f$ (with kernel pair $\ker(b)$), then $U b$ is the pullback of $U p$ along $U f$ since $U$ preserves pullbacks, and so $U b$ is a regular epi since $\mathbf{C}$ is regular. This $U b$ is the coequalizer of its kernel pair, and splits, so by Lemma \ref{split}, its lift $b$ is the coequalizer of $\ker(b)$. Thus regular epis in $\mathbf{C}^T$ are stable under pullback. For Barr-exactness, suppose $\pi_1, \pi_2: E \rightrightarrows B$ is an equivalence relation (or [[congruence]]) in $\mathbf{C}^T$. Then $U\pi_1, U\pi_2: U E \rightrightarrows U B$ is an equivalence relation in $\mathbf{C}$, and hence a kernel pair since $\mathbf{C}$ is exact. It is the kernel pair of its coequalizer $q$ in $\mathbf{C}$. By Lemma \ref{split}, the split coequalizer \begin{displaymath} \itexarray{ U E & \stackrel{\overset{U\pi_1}{\longrightarrow}}{\underset{U\pi_2}{\longrightarrow}} & U B & \stackrel{q}{\to} & Q } \end{displaymath} lifts to a coequalizer diagram in $\mathbf{C}^T$, and since kernel pairs are preserved and reflected by $U: \mathbf{C}^T \to \mathbf{C}$, we conclude that $\pi_1, \pi_2$ is the kernel pair of the lifted regular epi over $q$. \end{proof} \begin{cor} \label{}\hypertarget{}{} If $T$ is a monad on a [[slice category]] $Set/X$, then the category of $T$-algebras is (Barr-)exact. If $T$ is a monad on $Vect$, then $Vect^T$ is exact. \end{cor} \hypertarget{for_functors_preserving_filtered_colimits}{}\subsubsection*{{For functors preserving filtered colimits}}\label{for_functors_preserving_filtered_colimits} Returning now to existence of general coequalizers, here is a more difficult and arcane result given in \hyperlink{BarrWells}{Toposes, Theories, and Triples} (theorem 3.9, p. 267): \begin{prop} \label{}\hypertarget{}{} If $C$ has coequalizers and equalizers of arbitrary sets of parallel morphisms, and if a monad $T: C \to C$ preserves colimits of countable chains $\omega \to C$, then $C^T$ has coequalizers. \end{prop} \begin{cor} \label{}\hypertarget{}{} If $C$ is complete and cocomplete and $T: C \to C$ preserves [[filtered colimits]], or even just colimits of $\omega$-chains, then $C^T$ is complete and cocomplete. \end{cor} \hypertarget{for_locally_presentable_categories}{}\subsubsection*{{For locally presentable categories}}\label{for_locally_presentable_categories} If $C$ is a [[locally presentable category]] and $T$ is an [[accessible monad]] (aka a bounded monad, aka a monad with rank) on $C$, then $C^T$ is also locally presentable and in particular cocomplete. Details may be found in [[Locally presentable and accessible categories]]. \hypertarget{relatively_free_functors}{}\subsection*{{Relatively free functors}}\label{relatively_free_functors} \begin{theorem} \label{}\hypertarget{}{} Suppose that $\theta: S \to T$ is a morphism of monads on $C$, and suppose that $C^T$ has coequalizers. Then the relative ``forgetful'' functor \begin{displaymath} C^\theta: C^T \to C^S \end{displaymath} (pulling back a $T$-algebra $(c, \xi: T c \to c)$ to the $S$-algebra $(c, S c \stackrel{\theta c}{\longrightarrow} T c \stackrel{\xi}{\longrightarrow} c)$, thus remembering only underlying $S$-algebra structure) has a left adjoint. \end{theorem} \begin{proof} Since the following diagram is commutative: \begin{displaymath} \begin{array}{cccc}C^T & \overset{C^{\theta}}{\to} & C^S \\ \mathllap{U^T} \downarrow & & \downarrow \mathrlap{U^S} \\ C & = & C \end{array} \end{displaymath} (using an obvious notation), it follows immediately from a corollary to the [[adjoint lifting theorem]] that if $C^T$ has coequalizers of reflexive pairs, then $C^{\theta}$ has a left adjoint and is, in fact, monadic. This actually completes the proof, but here is a concrete description of the left adjoint to $C^\theta$: it sends an $S$-algebra $(c, \xi: S c \to c)$ to the (reflexive) coequalizer of the pair \begin{equation} \itexarray{ & & T T c & & \\ & \mathllap{T \theta c} \nearrow & & \searrow \mathrlap{\mu c} \\ T S c & & \stackrel{\; \; \; \; \; \; \; \; T \xi \; \; \; \; \; \; \; \; }{\longrightarrow} & & T c } \label{coeq}\end{equation} where $\mu: T T \to T$ is the monad multiplication. (If $u: 1_C \to S$ is the unit of $S$, then $T u c: T c \to T S c$ is a common right inverse of both arrows of the pair.) This coequalizer is analogous to the construction of the left adjoint $B \otimes_A -$ to the ``restriction'' functor $Ab^f: Ab^B \to Ab^A$ between module categories (restricting scalar multiplication on a $B$-module along a ring map $f: A \to B$); given an $A$-module $(M, \alpha_M: A \otimes M \to M)$, the $B$-module $B \otimes_A M$ is the coequalizer in $Ab^B$ of \begin{displaymath} \itexarray{ & & B \otimes B \otimes M & & \\ & \mathllap{B \otimes f \otimes M} \nearrow & & \searrow \mathrlap{mult_B \otimes M} \\ B \otimes A \otimes M & & \stackrel{\; \; \; \; \; \; \; \; B \otimes \alpha_M \; \; \; \; \; \; \; \; }{\longrightarrow} & & B \otimes M, } \end{displaymath} and so the coequalizer of \eqref{coeq} will be denoted $T \circ_S c$ to underline the analogy. To see that $T \circ_S -$ is the left adjoint, let $(d, \alpha: T d \to d)$ be a $T$-algebra. Any map $f: c \to d$ in $C$ induces a unique $T$-algebra map $\phi: T c \to d$: \begin{displaymath} \phi = (T c \stackrel{T f}{\to} T d \stackrel{\alpha}{\to} d) \end{displaymath} and the claim is that $f: c \to d$ is an $S$-algebra map $c \to C^\theta(d)$ if and only if $\phi$ coequalizes the pair in \eqref{coeq}, i.e., if $\phi$ factors (uniquely) through a $T$-algebra map $T \circ_S c \to d$. Indeed, assume $f$ is an $S$-algebra map, so we have a commutative diagram \begin{equation} \itexarray{ S c & \stackrel{\xi}{\to} & c \\ \mathllap{S f} \downarrow & & \downarrow \mathrlap{f} \\ S d & \underset{\alpha \circ \theta d}{\to} & d. } \label{alg}\end{equation} That $\phi = \alpha \circ T f$ coequalizes the pair of \eqref{coeq} follows by expanding the diagram \begin{equation} \itexarray{ T S c & \stackrel{T \theta c}{\to} & T T c & & & & \\ & \mathllap{T \xi} \searrow & \downarrow \mathrlap{\mu c} & & & & \\ & & T c & \underset{T f}{\to} & T d & \underset{\alpha}{\to} & d } \label{coeq2}\end{equation} to \begin{equation} \itexarray{ & & T S d & & & & \\ & \mathllap{T S f} \nearrow & \; \; (nat) & \searrow \mathrlap{T \theta d} & & & \\ T S c & \stackrel{T \theta c}{\to} & T T c & \stackrel{T T f}{\to} & T T d & \stackrel{T \alpha}{\to} & T d \\ & \mathllap{T \xi} \searrow & \downarrow \mathrlap{\mu c} & \; \; (nat) & \downarrow \mathrlap{\mu d} & \; \; (alg) & \downarrow \mathrlap{\alpha} \\ & & T c & \underset{T f}{\to} & T d & \underset{\alpha}{\to} & d } \label{commute}\end{equation} where using \eqref{alg}, the path along the top may be replaced by $T f \circ T \xi: T S c \to T d$, reducing the desired coequalizing of \eqref{coeq2} to the tautology $\alpha \circ T f \circ T \xi = \alpha \circ T f \circ T \xi$. Conversely, assuming the coequalizing of \eqref{coeq2}, the perimeter of \eqref{commute} commutes, and on top of that we stack naturality diagrams for the monad unit $\eta$ of $T$: \begin{equation} \itexarray{ & & S d & & & & \\ & _\mathllap{S f} \nearrow & _\mathllap{\eta S d} \downarrow & \searrow _\mathrlap{\theta d} & & & \\ S c & (nat) & T S d & (nat) & T d & \stackrel{\alpha}{\to} & d \\ _\mathllap{\eta S c} \downarrow & _\mathllap{T S f} \nearrow & \; \; (nat) & \searrow _\mathrlap{T \theta d} & \downarrow_\mathrlap{\eta T d} & (nat) & \downarrow _\mathrlap{\eta d}\\ T S c & \stackrel{T \theta c}{\to} & T T c & \stackrel{T T f}{\to} & T T d & \stackrel{T \alpha}{\to} & T d \\ & \mathllap{T \xi} \searrow & \downarrow \mathrlap{\mu c} & \; \; (nat) & \downarrow \mathrlap{\mu d} & \; \; (alg) & \downarrow \mathrlap{\alpha} \\ & & T c & \underset{T f}{\to} & T d & \underset{\alpha}{\to} & d } \label{commute2}\end{equation} The vertical composite on the right is $1_d$ by a unit equation for a $T$-algebra, and thus we may simplify the perimeter. Retaining the (simplified) perimeter of \eqref{commute2}, and inserting some naturality squares and a unit diagram inside, we arrive at the commutative diagram \begin{displaymath} \itexarray{ S c & \stackrel{S f}{\to} & S d & \stackrel{\theta d}{\to} & T d & & \\ _\mathllap{\eta S c} \downarrow & \searrow\; _\mathllap{\xi} & & & & \searrow \mathrlap{\alpha} & \\ T S c & (nat) & c & \stackrel{f}{\to} & d & \stackrel{1_d}{\to} & d \\ & \mathllap{T \xi} \searrow & \downarrow _\mathrlap{\eta c} & (nat) & \downarrow _\mathrlap{\eta d} & (unit) & \downarrow \mathrlap{1_d} \\ & & T c & \underset{T f}{\to} & T d & \underset{\alpha}{\to} & d } \end{displaymath} where the commutativity of the unlabeled polygonal region is just the commutativity of \eqref{alg}. This completes the proof of the claim. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Michael Barr]] and [[Charles Wells]], \emph{Toposes, Theories, and Triples}, Reprints in Theory and Applications of Categories (2005), 1-289. (\href{http://www.tac.mta.ca/tac/reprints/articles/12/tr12.pdf}{online pdf}) \end{itemize} \begin{itemize}% \item [[Jiří Adámek]] and V\'a{}clav Koubek, \emph{Are colimits of algebras simple to construct?}, Journal of Algebra, Volume 66, Issue 1 (September 1980), 226-250. (\href{http://www.sciencedirect.com/science/article/pii/0021869380901222}{link}) \end{itemize} \end{document}