\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{colimits of normal spaces} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{basic_results}{Basic results}\dotfill \pageref*{basic_results} \linebreak \noindent\hyperlink{tietze_characterization}{Tietze characterization}\dotfill \pageref*{tietze_characterization} \linebreak \noindent\hyperlink{sequences_of_normal_spaces}{Sequences of normal spaces}\dotfill \pageref*{sequences_of_normal_spaces} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak This page will collect some technical material concerning [[colimits]] of [[normal spaces]] as computed in [[Top]]. Here ``normal'' means $T_4$, i.e., we assume as part of normality that points are closed. In particular it shows that [[CW-complexes are paracompact Hausdorff spaces|CW-complexes are normal spaces]] (theorem \ref{CWComplexesAreNormal} below). A basic technique is the exploitation of the Tietze extension condition which characterizes normal spaces. Similar techniques may be used to prove a parallel set of results for [[paracompact spaces]]; see [[colimits of paracompact spaces]]. \hypertarget{basic_results}{}\subsection*{{Basic results}}\label{basic_results} We start with some easy but useful results, using only our ``bare hands'' (i.e., using the definition of normality and applying simple reasoning). The first very easy observation is that normal spaces are closed under [[coproducts]] in [[Top]] (so-called ``[[disjoint union spaces]]''). The proof may be safely left to the reader. There is no hope that normal spaces are closed under [[coequalizers]] or [[pushouts]]. A first example that comes to mind is the [[line with double origin]], which is the topological [[pushout]] of the diagram \begin{displaymath} \mathbb{R} \leftarrow \mathbb{R} \setminus \{0\} \to \mathbb{R} \end{displaymath} where both maps are the inclusion map. This space isn't even [[Hausdorff space|Hausdorff]], as every [[neighborhood]] of the point $0_1$ (the image of the origin under the first pushout [[coprojection]]) intersects every neighborhood of the point $0_2$ (the image of the origin under the second coprojection). However, there are reasonable conditions under which pushouts will be normal. (Throughout we assume all spaces are $T_1$, i.e., that [[singletons]] are [[closed set|closed]] (\href{separation+axioms#T1InTermsOfClosureOfPoints}{here}), so that ``normal'' means $T_4$). \begin{prop} \label{normal}\hypertarget{normal}{} Let $X$ be normal, and suppose $q: X \to Y$ in $Top$ is a [[closed maps|closed]] [[surjective function|surjection]]. Then $Y$ is normal. \end{prop} \begin{proof} First we claim singletons of $Y$ are closed: for each $y \in Y$ there exists $x \in X$ such that $y = q(x)$. Since $\{x\}$ is closed in $X$ and $q$ is closed, $\{y\} = q(\{x\})$ is closed in $Y$. Let $C, D$ be disjoint closed sets of $Y$, so that $\neg C, \neg D$ form an open cover of $Y$. Then $A = q^{-1}(\neg C), B = q^{-1}(\neg D)$ form an open cover of $X$. Normality of $X$ (in ``[[De Morgan duality|De Morganized]]'' form) implies there are closed subsets $E \subseteq A, F \subseteq B$ which together also cover $X$. Then $Y = q(X) = q(E \cup F) = q(E) \cup q(F)$, so the closed sets $q(E), q(F)$ cover $Y$. And we have $q(E) \subseteq q(A) = \neg C$ and similarly $q(F) \subseteq \neg D$, which is equivalent to $C \subseteq \neg q(E)$ and $D \subseteq \neg q(F)$, where $\neg q(E), \neg q(F)$ are disjoint open sets of $Y$, and we are done. \end{proof} Here is one way in which such closed surjections arise: we know that [[compact Hausdorff spaces]] are normal spaces, and this is an especially nice class because the category of compact Hausdorff spaces is a [[pretopos]]. This is the categorical backdrop for the following observation. (We don't need this lemma in any result below; we include it merely as a handy lemma to have around.) \begin{lemma} \label{pretopos}\hypertarget{pretopos}{} Let $X$ be a compact Hausdorff space. Then an equivalence relation $\sim \hookrightarrow X \times X$ is closed as a subset of $X \times X$ iff the quotient map $q: X \to X/\sim$ is a closed map. (In which case $X/\sim$ is compact Hausdorff.) \end{lemma} \begin{proof} If $q: X \to X/\sim$ is a closed map, making $X/\sim$ compact Hausdorff, then the diagonal $\Delta \hookrightarrow X\sim \times X/\sim$ is a [[embedding of topological spaces|closed embedding]], so that its pullback along $q \times q$ \begin{displaymath} \itexarray{ \sim & \hookrightarrow & X \times X \\ \downarrow & & \downarrow \mathrlap{q \times q} \\ \Delta & \hookrightarrow & X/{\sim} \times X/{\sim} } \end{displaymath} also defines a closed subset of $X \times X$. In the other direction, suppose $\sim$ is closed, and let $A \subseteq X$ be a closed subset of $X$. Consider its $\sim$-\emph{saturation} $\bar{A}$, namely \begin{displaymath} \{x \in X: (\exists_{a \in A})\; x\sim a\} = \pi_1((\sim)\cap (X \times A)). \end{displaymath} This is a closed set because the first projection $\pi_1$ is a closed map (by compactness of $X$). Moreover, $\bar{A} = q^{-1}(q(A))$, essentially by definition ($x \in q^{-1}(q(A))$ means $q(x) = q(a)$ for some $a \in A$). Since $q^{-1}(q(A))$ is closed, $q(A)$ is closed by definition of quotient topology. \end{proof} \begin{remark} \label{}\hypertarget{}{} A [[closed map|closed]] [[surjection]] is a quotient map (a [[regular epimorphism|regular epi]] in [[Top]]), and a closed [[injection]] is an [[embedding of topological spaces|embedding]] (a [[regular monomorphism|regular mono]] in $Top$). \end{remark} \begin{lemma} \label{poclosed}\hypertarget{poclosed}{} In $Top$, the pushout of a closed embedding along any continuous map is again a closed embedding. \end{lemma} \begin{proof} We reproduce the proof given \href{/nlab/show/subspace+topology#pushout}{here}. Since $U = \hom(1, -): Top \to Set$ is [[faithful functor|faithful]], we have that monos are reflected by $U$; also monos and pushouts are preserved by $U$ since $U$ has both a [[left adjoint]] and a [[right adjoint]]. In $Set$, the pushout of a mono along any map is a mono, so we conclude $j$ is monic in $Top$. Furthermore, such a pushout diagram in $Set$ is also a pullback, so that we have the [[Beck-Chevalley condition|Beck-Chevalley equality]] $\exists_i \circ f^\ast = g^\ast \exists_j \colon P(C) \to P(B)$ (where $\exists_i \colon P(A) \to P(B)$ is the [[direct image]] map between [[power sets]], and $f^\ast: P(C) \to P(A)$ is the [[inverse image]] map). To prove that $j$ is a subspace, let $U \subseteq C$ be any open set. Then there exists open $V \subseteq B$ such that $i^\ast(V) = f^\ast(U)$ because $i$ is a subspace inclusion. If $\chi_U \colon C \to \mathbf{2}$ and $\chi_V \colon B \to \mathbf{2}$ are the maps to [[Sierpinski space]] that classify these open sets, then by the universal property of the pushout, there exists a unique continuous map $\chi_W \colon D \to \mathbf{2}$ which extends the pair of maps $\chi_U, \chi_V$. It follows that $j^{-1}(W) = U$, so that $j$ is a subspace inclusion. If moreover $i$ is an open inclusion, then for any open $U \subseteq C$ we have that $j^\ast(\exists_j(U)) = U$ (since $j$ is monic) and (by Beck-Chevalley) $g^\ast(\exists_j(U)) = \exists_i(f^\ast(U))$ is open in $B$. By the definition of the topology on $D$, it follows that $\exists_j(U)$ is open, so that $j$ is an open inclusion. The same proof, replacing the word ``open'' with the word ``closed'' throughout, shows that the pushout of a closed inclusion $i$ is a closed inclusion $j$. \end{proof} \hypertarget{tietze_characterization}{}\subsection*{{Tietze characterization}}\label{tietze_characterization} A powerful tool for proving theorems about topological colimits of normal spaces is the characterization of normal spaces via the Tietze extension theorem: \begin{theorem} \label{}\hypertarget{}{} A space $X$ is normal if and only if, for each closed subset $C \subseteq X$ and map $f: C \to \mathbb{R}$, there is an extension map $g: X \to \mathbb{R}$, i.e., a map whose restriction $g|_C$ coincides with $f$. \end{theorem} \begin{remark} \label{}\hypertarget{}{} \begin{enumerate}% \item There are variations on the theorem in which stronger separation properties (such as perfect normality, or $T_6$) may be reformulated in terms of extension conditions. \item We remark that the ``if'' part of the proof is very easy. If $A, B$ are closed disjoint subsets of $X$, then the closed subspace $C = A \cup B$ is the coproduct on $A, B$ in $Top$, and we may define a map $f: A \cup B \to \mathbb{R}$ to be the constant $0$ on $A$ and the constant $1$ on $B$. Let $g: X \to \mathbb{R}$ be any extension of $f$; then $U = g^{-1}(\{x: x \lt 1/3\})$ and $V = g^{-1}(\{x: x \gt 2/3\})$ are separating open sets. \end{enumerate} \end{remark} The following is a sample application. \begin{theorem} \label{attach}\hypertarget{attach}{} If $X, Y, Z$ are normal spaces and $h: X \to Z$ is a closed embedding and $f: X \to Y$ is a continuous map, then in the pushout diagram in $Top$ \begin{displaymath} \itexarray{ X & \stackrel{h}{\to} & Z \\ \mathllap{f} \downarrow & & \downarrow \mathrlap{g} \\ Y & \underset{k}{\to} & W, } \end{displaymath} the space $W$ is normal (and $k: Y \to W$ is a closed embedding, by the preceding Lemma). \end{theorem} \begin{proof} By the Tietze characterization, it suffices to show that any map $\phi: C \to \mathbb{R}$ on a closed subspace $C$ of $W$ can be extended to a map $\psi$ on all of $W$. Pulling back $C \hookrightarrow W$ along $k$, we have a closed subspace $k^{-1}(C) \hookrightarrow Y$ and a composite map $k^{-1}(C) \stackrel{k|}{\to} C \stackrel{\phi}{\to} \mathbb{R}$; call it $\alpha: k^{-1}(C) \to \mathbb{R}$. By normality of $Y$, the map $\alpha: k^{-1}(C) \to \mathbb{R}$ extends to a map $\beta: Y \to \mathbb{R}$. We obtain a map $\beta f: X \to \mathbb{R}$. Similarly, pulling $C \hookrightarrow W$ back along $g$, we have a composite map $g^{-1}(C) \stackrel{g|}{\to} C \stackrel{\phi}{\to} \mathbb{R}$. We may now define a map \begin{displaymath} \gamma: h(X) \cup g^{-1}(C) \to \mathbb{R} \end{displaymath} by $\gamma(h(x)) = \beta f(x)$ for $h(x) \in h(X)$, and $\gamma(z) = \phi(g(z))$ for $z \in g^{-1}(C)$. It is not hard to check that $\gamma$ is well-defined (by commutativity of the pullback square) and is continuous (using the fact that $h|: X \to h(X)$ is a homeomorphism, since $h$ is an embedding), and that $h(X) \cup g^{-1}(C)$ is a closed subset of $Z$ (since $h$ is closed). By normality of $Z$, we may extend $\gamma$ to a map $\delta: Z \to \mathbb{R}$, and we have just observed that $\delta h = \beta f$, so the pair $(\beta, \delta): Y + Z \to \mathbb{R}$ induces a unique map $\psi: W \to \mathbb{R}$ such that $\psi k = \beta$ and $\psi g = \delta$. Finally, the restriction of $\psi$ to $C$ is $\phi$, as required. \end{proof} \hypertarget{sequences_of_normal_spaces}{}\subsection*{{Sequences of normal spaces}}\label{sequences_of_normal_spaces} \begin{prop} \label{sequence}\hypertarget{sequence}{} If $(i_n: X_n \to X_{n+1})_{n \in \mathbb{N}}$ is a countable sequence of closed embeddings between normal spaces, then the colimit $X = colim_n X_n$ is also normal. \end{prop} \begin{proof} Let $A, B$ be disjoint closed subsets of $X$, and for all $n$ put $A_n = X_n \cap A$, $B_n = X_n \cap B$. Working recursively, suppose given disjoint open sets $U_n, V_n$ such that $A_n \subseteq U_n$ and $B_n \subseteq V_n$. Since normality guarantees that we can refine further if necessary, i.e., find an open $O_n$ such that $A_n \subseteq O_n$ and $\widebar{O_n} \subseteq U_n$, we may assume that the closures $\widebar{U_n}$, $\widebar{V_n}$ are disjoint in $X_n$, as are their images in $X_{n+1}$ under the closed embedding $i_n$. The closed sets $i_n(\widebar{U_n}) \cup A_{n+1}$ and $i_n(\widebar{V_n}) \cup B_{n+1}$ are disjoint in $X_{n+1}$: \begin{itemize}% \item $A_{n+1} \cap B_{n+1} = \emptyset$ since $A \cap B = \emptyset$, \item $i_n(\widebar{U_n}) \cap i_n(\widebar{V_n}) = i_n((\widebar{U_n} \cap \widebar{V_n}) = i_n(\emptyset) = \emptyset$ where the direct image operator $i_n(-)$ preserves binary intersections since $i_n$ is monic, \item $i_n(\widebar{U_n}) \cap B_{n+1} = i_n(\widebar{U_n} \cap i_n^{-1}(B_{n+1})) = i_n(\widebar{U_n} \cap B_n) \subseteq i_n((\widebar{U_n} \cap \widebar{V_n}) = \emptyset$ (using Frobenius reciprocity), and similarly, \item $A_{n+1} \cap i_n(\widebar{V_n}) = \emptyset$. \end{itemize} Use normality of $X_{n+1}$ to select disjoint open sets $U_{n+1}, V_{n+1}$ such that $i_n(\widebar{U_n}) \cup A_{n+1} \subseteq U_{n+1}$ and $i_n(\widebar{V_n}) \cup B_{n+1} \subseteq V_{n+1}$, thus completing the recursive construction. It is clear that $i_n(U_n) \subseteq U_{n+1}$ and the union $U = colim_n U_n$ defines an open set of $X$ (by definition of colimit topology), as does $V = colim_n V_n$. The sets $U, V$ include $A, B$ respectively and are disjoint since any element they have in common must belong to $U_n$ and $V_n$ for sufficiently large $n$, which is impossible. This completes the proof. \end{proof} \begin{remark} \label{}\hypertarget{}{} An alternative proof using the Tietze characterization is easily given: if $C \subseteq colim_n X_n$ is closed and $f: C \to \mathbb{R}$ is continuous, then putting $C_n = X_n \cap C$ and $f_n = f|_{C_n}$, we define a suitable extension of each $f_n: C_n \to \mathbb{R}$ to a map $g_n: X_n \to \mathbb{R}$ by induction. Supposing at stage $n$ the map $g_n$ is given, we have a well-defined map $h_{n+1}: C_{n+1} \cup i_n(X_n) \to \mathbb{R}$ defined as $f_{n+1}$ on $C_{n+1}$ and as the composite $i_n(X_n) \cong X_n \stackrel{g_n}{\to} \mathbb{R}$ on $i_n(X_n)$. Then using normality of $X_{n+1}$, extend $h_{n+1}$ to a map $g_{n+1}: X_{n+1} \to \mathbb{R}$. Clearly $g_{n+1}$ extends $f_{n+1}$ and we have the compatibility equations $g_n = g_{n+1} i_n$, so the $g_n$ paste together to form a map $g: colim_n X_n \to \mathbb{R}$ which extends $f$. A little use of notation allows a short exposition of this proof. Let $Z$ be the topological space corresponding to the partial order $a\lt b\gt c\lt d\gt e$ (where $a,c,d$ are closed points, $b,d$ are open, and closed subsets are $\{a,b,c\},\{c,d,e\},\{a\},\{c\},\{e\},\emptyset$), and let $g$ be the map gluing together points $b,c,d$. By Theorem 2.1, $f$ has the left lifting property wrt $g$ whenever $f$ is a closed embedding into a normal space. As each $i_n: X_n \to X_{n+1}$, ${n \in \mathbb{N}}$ has the left lifting property wrt $g$, their transfinite composition $\emptyset\to colim_n X_n$ has the same lifting property, which means that $X$ is normal. \end{remark} \begin{theorem} \label{CWComplexesAreNormal}\hypertarget{CWComplexesAreNormal}{} A [[CW-complex]] is a [[normal space]]. \end{theorem} \begin{proof} A CW-complex $X$ is formed by an inductive process where the $n$-skeleton $X_n$ is formed as an [[attachment space]] formed from normal spaces. That is, we start with the normal space $X_{-1} = \emptyset$, and given the normal space $X_{n-1}$ and an attaching map $f: S_{n-1} = \sum_{i \in I} S_i^{n-1} \to X_{n-1}$, we push out the closed embedding $S_{n-1} = \sum_{i \in I} S_i^{n-1} \hookrightarrow \sum_{i \in I} D_i^n = D_n$ along the attaching map $f$ to get a closed embedding \begin{displaymath} i_n: X_{n-1} \to X_n (= X_{n-1} \cup_{S_{n-1}} D_n) \end{displaymath} and deduce $X_n$ is normal by Theorem \ref{attach}. Then $X = colim_n X_n$ is normal by applying Proposition \ref{sequence}. \end{proof} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[colimits of paracompact Hausdorff spaces]] \end{itemize} \end{document}